Supporting Information

Nano-ferrous ferric oxide (nano-Fe₃O₄): magnetite catalytic system

for the one-pot four-component tandem Imine/enamine formation-

Knoevenagel-Michael-Cyclocondensation reaction of dimedone,

aldehydes, β -ketoesters and ammonium acetate under green media

Ardeshir Khazaei,*^a Ahmad Reza Moosavi-Zare,*^b Hadis Afshar-Hezarkhani^a and

Vahid Khakyzadeh^a

^aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.

^bDepartment of Chemistry, University of Sayyed Jamaleddin Asadabadi, Asadabad, 6541835583,

Iran.

TABLE OF CONTENTS

Contents	Page
Fig S1. XRD pattern of the nano-Fe ₃ O ₄ (a) and transmission electron microscopy (TEM) of the nano-Fe ₃ O ₄ (b).	3
Fig S2. The vibrating sample magnetometer (VSM) of the nano-Fe ₃ O ₄ .	3
Fig S3. FT-IR spectrum of the nano-Fe ₃ O ₄ .	4
Central Composite Design (CCD)	5
Table 1. Design Matrix	6
Table 2. Levels of the experimental variables of the CCD.	6
Table 3. Analysis of variance for the response surface quadratic model for time.	7
Table 4. Analysis of variance for the response surface quadratic model for yield.	7
Data of compounds.	8
NMR spectra of compounds	17

Fig S1. XRD pattern of the nano-Fe₃O₄ (a) and transmission electron microscopy (TEM) of the nano-Fe₃O₄ (b).

Fig S2. The vibrating sample magnetometer (VSM) of the nano-Fe $_3O_4$.

Fig S3. FT-IR spectrum of the nano-Fe₃O₄.

Central Composite Design

We have examined the catalytic activity of the catalyst to promote the synthesis of hexahydroquinolines. For this purpose, a mixture of dimedone, 4-nitrobenzaldehyde, ethyl acetoacetate and ammonium acetate using of nano-Fe₃O₄ under solvent-free condition was chosen as model reaction. Optimization of the reaction condition was investigated using the response surface method {Central Composite Design (CCD)} with five replicate at central point for developing a second order model with 19 runs (Table S1). In statistics, a central composite design is an experimental design, useful in response surface methodology, for building a second order (quadratic) model for the response variable without needing to use a complete three-level factorial experiment. Three variables that can effect on yield and time of the reaction are temperature (A with levels of the variables 35 to 65 °C), amount of catalyst (B with levels of the variables 2.8 to 8.2 mol%) and amount of ammonium acetate (C with levels of the variables 2.2 to 2.8 mmol). The levels of the variables and the corresponding response values of the CCD are shown in Table S2. Yield and time of the reaction were used as the dependent variables and were fitted to a quadratic polynomial model. After programming optimization (Table S3 and S4), two polynomial response surface models based on significant levels and actual values for time and yield were obtained (Fig. 1 and Fig. 2).

Table	S1	.Design	Matrix
-------	----	---------	--------

RUN	F1 (Temprature: oC)	F2 (Catalyst:	F3 (Ammonium	R1 (Time:	R2 (Yield: %)
		mol%)	acetate: mmol)	min)	
1	64.86509	2.824284	2.797302	13	80
2	75	5.5	2.5	5.5	91
3	50	5.5	2.5	7	90
4	35.13491	2.824284	2.202698	15	76
5	35.13491	8.175716	2.202698	7	89
6	50	5.5	3	7	90
7	50	5.5	2.5	7.5	89
8	64.86509	2.824284	2.202698	13	79
9	50	5.5	2.5	7.5	89
10	64.86509	8.175716	2.202698	5.5	91
11	35.13491	2.824284	2.797302	15	76
12	64.86509	8.175716	2.797302	5	91
13	50	5.5	2.5	7.5	89
14	50	10	2.5	5	92
15	50	1	2.5	25	71
16	50	5.5	2.5	7.5	89
17	50	5.5	2	7	88
18	35.13491	8.175716	2.797302	7.5	89
19	50	5.5	2.5	7.5	89

Table S2

Levels of the experimental variables of the CCD.

Variables	Units	Low Actual	High Actual
Α	٥C	-7.5	7.5
В	g×1000	3.25	7.75
С	eq.	1.5	2.5

Table S3 Analysis of variance for the response surface quadratic model for time					
Source	Sum ofSquares	df	MeanSquare	FValue	p-valueprob> F
Model	430.1705	3	143.3902	143.5109	< 0.0001
A-Temprature	11.08055	1	11.08055	11.08988	0.0046
B-Catalyst	305.9119	1	305.9119	306.1695	< 0.0001
B^2	105.2703	1	105.2703	105.3589	< 0.0001

Table S4 Analysis of variance for the response surface guadratic model for yield					
Source	Sum ofSquares	df	MeanSquare	FValue	p-value prob> F
Model	698.9412	4	174.7353	121.0036	< 0.0001
A-					
Temprature	31.47444	1	31.47444	21.79594	0.0004
B-Catalyst	520.5786	1	520.5786	360.4989	< 0.0001
A^2	11.66522	1	11.66522	8.078128	0.0130
B^2	127.6191	1	127.6191	88.37577	< 0.0001
Residual	20.21671	14	1.444051		

Ethyl 2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (1)

White solid, ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 0.85 (s, 3H), 1.00 (s, 3H), 1.13 (t, *J* = 7.0 Hz, 3H), 2.01-2.20 (m, 2H), 2.29 (s, 3H), 2.38-2.50 (m, 2H), 3.97 (q, *J* = 7.0 Hz, 2H), 4.82 (s, 1H), 7.05 (m, 1H), 7.18 (t, *J* = 6.7 Hz, 2H), 7.21 (t, *J* = 6.5 Hz, 2H), 9.12 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 14.5, 18.8, 26.8, 29.5, 32.6, 36.5, 50.6, 59.6, 103.4, 109.9, 113.5, 126.9, 128.8, 130.5, 146.0, 150.3, 167.0, 194.7.

Ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (2)

White solid, ¹H NMR (500 MHz, CDCl₃): δ (ppm) 0.92 (s, 3H), 1.10 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H), 2.16 (d, *J* = 16.4 Hz, 2H), 2.24-2.29 (Distorted AB system, 2H), 2.41 (s, 3H), 4.07 (q, *J* = 7.1 Hz, 2H), 5.18 (s, 1H), 6.68 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 8.09 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 14.6, 19.8, 27.5, 29.8, 33.1, 37.7, 41.3, 51.0, 60.5, 105.3, 111.4, 123.7, 129.4, 145.0, 146.6, 149.6, 154.9, 167.3, 195.9.

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (3)

White solid, ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 0.85 (s, 3H), 1.00 (s, 3H), 1.14 (t, *J* = 7.0 Hz, 3H), 1.96 (d, *J* = 16.0 Hz, 1H), 2.15 (d, *J* = 16.1 Hz, 1H), 2.27 (s, 3H), 2.37-2.49 (m, 2H), 3.66 (s, 3H), 3.97 (q, *J* = 7.0 Hz, 2H), 4.79 (s, 1H), 6.73 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.3 Hz, 2H), 8.99 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.4, 50.6, 55.3, 59.4, 104.4, 110.7, 113.5, 128.8, 140.5, 145.1, 149.7, 157.7, 167.4, 194.7.

Ethyl 2,7,7-trimethyl-5-oxo-4-p-tolyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4)

White solid, ¹H NMR (500 MHz, CDCl₃): δ (ppm) 0.96 (s, 3H), 1.08 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 2.15-2.31 (m, 7H), 2.35 (s, 3H), 4.09 (q, J = 7.1 Hz, 2H), 5.04 (s, 1H), 6.76 (s, 1H), 7.02 (d, J = 7.8 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 14.7, 19.7, 21.5, 27.6, 29.8, 33.1, 36.6, 41.3, 51.2, 60.2, 106.6, 112.4, 128.3, 129.0, 135.8, 143.9, 144.7, 149.3, 167.9, 196.1.

Ethyl 4-(4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5)

White solid, ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 0.86 (s, 3H), 1.00 (s, 3H), 1.14 (t, J = 7.0 Hz, 3H), 1.96 (d, *J* = 16.0 Hz, 1H), 2.15 (d, *J* = 16.1 Hz, 1H), 2.26 (s, 3H), 2.36-2.49 (m, 2H), 3.96 (q, *J* = 7.0 Hz, 2H), 4.74 (s, 1H), 6.56 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.1 Hz, 2H), 8.94 (s, 1H), 9.01 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 14.6, 18.7, 26.9, 29.6, 32.6, 35.3, 50.8, 59.4, 104.6, 110.8, 114.9, 128.8, 138.9, 144.8, 149.6, 155.7, 167.5, 194.7.

Ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (6)

White solid, ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 0.83 (s, 3H), 0.99 (s, 3H), 1.10 (t, *J* = 6.9 Hz, 3H), 1.96 (d, *J* = 16.0 Hz, 1H), 2.16 (d, *J* = 16.1 Hz, 1H), 2.29 (s, 3H), 2.38-2.49 (m, 2H), 3.97 (q, *J* = 7.0 Hz, 2H), 4.84 (s, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 7.37 (d, *J* = 7.2 Hz, 2H), 9.09 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm) 14.6, 18.8, 26.9, 29.5, 32.6, 36.2, 50.6, 59.5, 103.5, 110.1, 119.1, 130.2, 131.0, 145.8, 147.4, 150.0, 167.1, 194.7.

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (7)

White solid, IR (KBr): (3274, 1707, 1605, 1489, 1382 cm⁻¹; ¹H NMR (400 MHZ, DMSO-d₆): δ 0.82 (s, 3H), 0.99 (s, 3H), 1.11 (t, *J* = 7.08Hz, 3H), 1.97 (d, *J* =16.08, 3H), 2.16 (d, *J* =16.12 Hz,1H), 2.43-2.50 (Distorted AB system, 2H), 3.96 (d, *J* =7.08 Hz, 2H), 4.83 (s, 1H), 7.15 (d, *J* =8.48, 2H), 7.24 (d, *J* =8.44, 2H), 9.01 (s, 1H).

Ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (9)

White solid, IR (KBr): 3285, 2957, 1689, 1611, 1488, 1381, 1216 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 0.83 (s, 3H), 0.99 (s, 3H), 1.10 (t, *J* =7.08 Hz, 3H), 1.89 (d, *J* =16.08 Hz, 1H), 2.11 (d, *J* =16.08 Hz, 1H), 2.18 (s, 3H), 2.40-2.50 (Distorted AB system, 2H), 3.68 (s, 3H), 3.91 (q, *J* =3.64 Hz, 2H), 5.04 (s, 1H), 6.75 (d, *J* =7.44 Hz, 1H), 6.82 (d, *J* =8.04 Hz, 1H), 7.03 (d, *J* =7.36 Hz, 1H), 7.09 (q, *J* =1.44 Hz, 1H), 8.93 (s, 1H); ¹³C NMR (400 MHz, DMSO-d₆): 14.05, 18.00,

26.15, 29.28, 31.95, 32.77, 50.36, 55.14, 58.72, 102.89, 108.64, 110.96, 119.44, 126.90, 130.46, 134.93, 144.08, 149.94, 157.10, 167.26, 193.79.

Ethyl 4-(2,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (10)

White solid, IR (KBr): (3285, 1706, 1609, 1493, 1381, 1214 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆): δ 0.83 (s, 3H), δ 0.92 (s, 3H), 1.07 (t, *J* =7.08 Hz, 3H), 1.91 (d, *J* =16.04 Hz, 1H), 2.14 (d, *J* =16.08 Hz, 1H), 2.22 (s, 3H), 2.49-2.50 (Distorted AB system, 2H), 3.95-3.91 (m, 2H), 5.14 (s, 1H), 7.31 (s, 2H), 7.34 (s, 1H), 9.12 (s, 1H); ¹³C NMR (400 MHz, DMSO-d₆): 14.07, 18.19, 26.37, 29.01, 31.94, 34.73, 50.14, 58.99, 102.69, 109.18, 126.83, 128.16, 130.70, 132.75, 132.82,144.19, 145.44, 149.85, 196.3.

Ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (11):

White solid, IR (KBr): (3408, 3289, 1675, 1606, 1485, 1220 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 0.86 (s, 3H), 1.00 (s.3H). 1.13 (t, *J* =7.04 Hz, 3H), 2.00 (s, 1H), 2.15 (d, *J* =16.08 Hz, 1H), 2.26 (s, 3H), 2.38-2.50 (Distorted AB system, 2H), 3.97 (q, *J* =7.08 Hz, 2H), 4.78 (s,

1H), 6.46-6.43 (m, 1 H), 6.57 (d, *J* =7.24 Hz, 2H), 6.93 (t, *J* =7.96 Hz,1H), 9.01 (s,1H), 9.06 (s, 1H); ¹³C NMR (22.5 MHz, DMSO-d₆): 14.8, 18.9, 27.4, 29.8, 32.8, 36.4, 40.4, 51.2, 59.7, 104.6, 110.8, 113.4, 115.4, 119.0, 129.3, 145.4, 150.2, 157.7, 167.8, 195.0.

Ethyl 2,7,7-*trimethyl*-4-(2-*nitrophenyl*)-5-*oxo*-1,4,5,6,7,8-*hexahydroquinoline*-3-*carboxylate* (14).

yellow solid, mp 205-207 C. IR (KBr): 3303, 2926, 2703, 1726, 1711, 1665, 1634, 1553, 1367, 1257 cm⁻¹. ¹H NMR: (400 MHz CDCl₃): δ (ppm) 0.91 (s, 3H), 1.09 (q, *J* =7.2, 3H), 1.61 (s, 3H), 2.07 (d, *J* =10.4, 1H), 2.18 (d, *J* =7.2, 1H), 2.30 (d, *J*=7.6, 1H), 2.29 (s, 1H), 2.38 (s, 3H), 3.97-4.10 (m, 2H), 5.87 (s, 1H), 5.91 (s, 1H), 7.23 (t, *J* = 8, 1H), 7.44 (t, *J* =7.6, 1H) 7.50 (d, *J* =7.6, 1H), 7.74 (d, *J* = 8, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.0, 19.5, 27.3, 29.0, 32.6, 33.1, 41.2, 50.4, 60.0, 105.3, 111.6, 124.0, 126.7, 131.2, 132.1, 141.2, 144.0, 148.0, 148.9, 167.1, 195.1; MS: m/z = 384 (M⁺).

Methyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (15)

White solid, IR (KBr): 3348 3050 2928 2820 1725 1700 1680 1646 1446 1256 cm⁻¹. ¹H NMR: (400 MHz, CDCl₃): δ (ppm) 0.95 (s 3H) 1.09 (s 3H) 2.15 (s 3H) 2.21

13

(d J=12.8 1H) 2.27 (s 1H) 2.32 (s 1H) 2.38 (d J=12 1H) 3.63 (s 3H) 3.75 (s 3H) 5.02 (s 1H) 5.84 (s 1H) 6.77-6.74 (m 2H) 7.22 (dd J=4.8, J=2 1H) 7.28 (s 1H). ¹³C NMR (100 MHz CDCl₃): δ (ppm) 19.5 27.1 29.4 32.7 35.4 41.1 50.7 51.0 55.1 106.0 112.5 113.3 128.7 139.3 143.3 147.5 157.7 167.9 195.5.

Methyl 4-(3-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (16)

White solid, ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 0.83 (s, 3H), 1.00 (s, 3H), 1.99 (d, *J* = 16.0 Hz, 1H), 2.18 (d, *J* = 16.1 Hz, 1H), 2.30 (s, 3H), 2.39-2.49 (m, 2H), 3.53 (s, 3H), 4.85 (s, 1H), 7.14-7.16 (m, 2H), 7.25-7.27 (m, 2H), 9.15 (s, 1H); 13C NMR (75 MHz, DMSO-d₆): δ (ppm) 18.8, 26.8, 29.5, 32.6, 36.3, 103.1, 109.9, 121.6, 126.8, 129.1, 130.5, 130.6, 146.3, 150.3, 150.5, 167.5, 194.7.

Ethyl 4-(3-ethoxy-4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. (21)

white solid, IR (KBr): 3563, 3326, 2956, 2892, 1735, 1703, 1668, 1645, 1626, 1603, 1326 cm⁻¹. ¹H NMR: (400 MHz, DMSO-d₆): δ (ppm) 1.00 (s, 3H), 1.14 (t, *J* = 6.8), 1.28 (t, *J*

= 6.4), 1.90 (s, 3H), 1.97 (d, J=14, 1H), 2.16 (d, J=15.6, 1H), 2.26 (d, J=12, 1H), 2.38 (s, 3H), 2.42 (s, 1H), 3.89 (t, J=7.2, 2H), 3.98 (q, J=7.6, 2H), 4.72 (s, 1H), 5.57 (d, J=7.6, 1H), 6.49 (d, J=7.6, 1H), 6.67 (s, 1H), 8.55 (s, 1H), 8.99 (s, 1H); ¹³C NMR (100MHz, DMSO-d₆): δ (ppm) 19.5, 27.1, 29.4, 32.7, 35.4, 41.1, 50.7, 51.0, 55.1, 106.0, 112.5, 113.3, 128.7, 139.3, 143.3, 147.5, 157.7, 167.9, 195.5; MS: m/z 399 (M⁺).

Ethyl 2,7,7-*trimethyl*-4-(*naphthalen*-1-*yl*)-5-*oxo*-1,4,5,6,7,8-*hexahydroquinoline*-3-*carboxylate* (23)

white solid, IR (KBr): 3402 2960 1703 1636 1381 2901 1675 1215 756 cm⁻¹. ¹H NMR: (400 MHz, CDCl₃): δ (ppm) 0.89 (t J = 8.8, 3H) 1.04 (s 3H) 2.04 (s 3H) CH₃) 2.09 (d J=13.6, 1H) 2.16 (s 1H) 2.21 (d J=9.6, 1H) 2.26 (s 1H) 2.36 (s 3H) 3.75-3.96 (m 2H) 5.83 (s 1H) 6.19 (s 1H) 7.28 (s 1H) 7.34 (t J=7.6, 1H) 7.434 (t J=7.6, 1H)7.56 (t J = 7.6, 1H) 7.63 (d J = 8 1H) 7.75 (d J = 8, 1H) 8.82 (d J = 8.8, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 13.9 19.3 27.1 29.3 31.7 32.5 41.0 50.5 59.6 107.8 113.4 125.2 125.8 126.6 126.8 127.7 131.1 133.2 142.7 146.0 147.6 167.5 195.6; MS: m/z 389 (M⁺).

Ethyl 4-(4-chloro-3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (24)

White solid, IR (KBr): 3397, 3100, 2906, 2823, 1725, 1706, 1635, 1641, 1436, 1578, 1326, 1241, 778 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃): δ (ppm) 0.97 (s, 3H), 1.11 (s, 3H), 1.22 (t, *J*=7.2, 3H), 2.17 (d, *J*=16.4, 1H), 2.22 (d, *J*=16.8, 2H), 2.36 (s, 1H), 2.42 (s, 3H), 4.09 (q, *J*=7.2, 2H), 5.11 (s, 1H), 5.89 (s, 1H), 7.55 (d, *J*=2, 1H), 7.57 (d, *J*=1.6, 1H), 7.77 (d, *J*=1.6, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 19.6, 27.1, 29.3, 32.8, 36.5, 41.1, 50.5, 60.1, 104.8, 111.1, 124.4, 125.0, 131.0, 133.3, 144.3, 147.5, 148.2, 166.6, 195.2.

Ethyl 2,7,7-trimethyl-5-oxo-4-p-tolyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (4)

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (8)

Ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (9)

Ethyl 4-(2,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (10)

Ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (11)

Ethyl 2,7,7-*trimethyl*-4-(2-*nitrophenyl*)-5-*oxo*-1,4,5,6,7,8-*hexahydroquinoline*-3-*carboxylate*

Methyl 4-(3-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (16)

Ethyl 4-(3-ethoxy-4-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. (21)

 $\label{eq:expansion} Ethyl~2, 7, 7-trimethyl-4-(naphthalen-1-yl)-5-oxo-1, 4, 5, 6, 7, 8-hexahydroquinoline-3-carboxylate$

(23)

carboxylate (24)

