Inflammatory modulation of hematopoietic stem cells by Magnetic Resonance Imaging (MRI)-detectable nanoparticles

Sezin Aday^{1,2*}, Jose Paiva^{1,2*}, Susana Sousa², Renata S.M. Gomes³, Susana Pedreiro⁴, Po-Wah So⁵, Carolyn Ann Carr⁶, Lowri Cochlin⁷, Ana Catarina Gomes², Artur Paiva⁴, Lino Ferreira^{1,2}

¹CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal, ²Biocant, Biotechnology Innovation Center, Cantanhede, Portugal,

³King's BHF Centre of Excellence, Cardiovascular Proteomics, King's College London, London, UK,

⁴Centro de Histocompatibilidade do Centro, Coimbra, Portugal,

⁵Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK,

⁶Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, UK,

⁷PulseTeq Limited, Chobham, Surrey, UK.

*These authors contributed equally to this work.

[#]Correspondence to Lino Ferreira (<u>lino@biocant.pt</u>).

Experimental Section

Preparation and characterization of NP210-PFCE. PLGA (Resomers 502 H; 50:50 lactic acid: glycolic acid) (Boehringer Ingelheim) was covalently conjugated to fluoresceinamine (Sigma-Aldrich) according to a protocol reported elsewhere¹. NPs were prepared by dissolving PLGA (100 mg) in a solution of propylene carbonate (5 mL, Sigma). PLGA solution was mixed with perfluoro-15-crown-5-ether (PFCE) (178 mg) (Fluorochem, UK) dissolved in trifluoroethanol (1 mL, Sigma). This solution was then added to a PVA solution (10 mL, 1% w/v in water) dropwise and stirred for 3 h. The NPs were then transferred to a dialysis membrane and dialysed (MWCO of 50 kDa, Spectrum Labs) against distilled water before freeze-drying. Then, NPs were coated with protamine sulfate (PS). For this purpose, NPs (1 mg/mL) and PS (1 mg/mL) were incubated for 15 min under agitation, at room temperature. After the incubation period, the NPs were dialyzed (MWCO of 10-12 kDa) against distilled water and freeze-dried. Under these conditions, approximately 13 μg of protamine sulfate existed per mg of NP. Particle size and zeta potential of the NPs were determined using light scattering via Zeta PALS Zeta Potential Analyzer and ZetaPlus Particle Sizing Software, v. 2.27 (Brookhaven Instruments Corporation), according to protocols described by us².

Quantification of internalized NPs. HUVECs and CD34⁺ cells were transfected with fluorescentlabelled NPs (500 μ g NPs for 4×10⁵ HUVECs or for 1×10⁶ CD34⁺ cells) in M200 medium (Invitrogen, Carlsbad, USA) or QBSF-60 (Quality Biological Inc., Gaithersburg, USA) for 4 h at 37°C. After incubation, the cells washed 3 times with medium and incubated either with CD31 microbead kit (for HUVECs) or CD34 microbead kit (for CD34⁺ cells) from Miltenyi for 30 min at +4°C. After incubation period, cells were centrifuged and supernatant was removed. Cells were resuspended in cell culture medium and passed through MS columns from Miltenyi to remove particles that were not internalized. Finally, magnetic beads were removed and cells were lysed in 1N sodium hydroxide (NaOH) solution. Fluorescence was measured using Gemini XPS fluorescence microplate reader at excitation and emission wavelengths 485 nm and 520 nm, respectively.

For inductively coupled plasma mass spectrometry (ICP-MS) analyses, CD34⁺ cells were transfected with SPIONs (30 nm in size, coated with poly-L-lysine, obtained from BioPAL Inc., Worcester, MA, USA) as described above, followed by the addition of nitric acid (69%, v/v) on top of cell pellet. ICP-MS analyses were performed for the quantification of Fe.

Electroporation and MRI studies. CD34⁺ cells were suspended in QBSF medium supplemented with 50 ng/mL Flt-3, 50 ng/mL SCF and 10% BSA at a concentration of 1×10^6 cells/mL. The cells were electroporated in a volume of 500 µL in 0.4 cm Bio-Rad Gene Pulser cuvettes with or without 2 mg/mL NP210-PFCE particles using Bio-Rad Gene Pulser Xcell electroporation system. The voltage was set to 220 Volt and pulse length was 38 ms. Immediately after electroporation, the cells were seeded into V-shaped 96-well plates at a concentration of 200,000 cells/mL in 200 µL medium and incubated at 37°C. After 24 hours, labeled cells were washed several times and incubated with CD34 microbead kit for 15 min at +4°C. After incubation, cells were centrifuged and supernatant was removed. Cells were resuspended in cell culture medium and passed through MS columns from Miltenyi to remove particles that were not internalized. Then, magnetic beads were removed from the cells, cells were fixated with 4% PFA for 15 min at room temperature, washed several times and resuspended in PBS for MRI measurements.

Gradient Echo MRI was performed on a 7T horizontal bore (60 G/cm, inner bore diameter 120 mm) system (Varian), using Direct Drive console (VJ NMR) with a linear transmit and receiver. For both ¹⁹F and ¹H imaging, coronal SEMS images were taken at matrix size of 128, 120 averages were taken, field of view was 40 × 40 cm, 9 imaging planes each of 2 mm depth no spacing between imaging planes, TE/TR = 5/80 ms with a flip angle of 90 degrees.

¹⁹*F*/¹*H in vivo MRI.* 10 million CD34⁺ cells were isolated via indirect selection using EasySep system. The beads were detached from the cells, cells were left to be stabilized for 24 hours and then labeled with NPs (500 μ g NPs for 1×10⁶ CD34⁺ cells) in M199 medium (Sigma, USA) for 4 h at 37°C. Cells were injected into the myocardium of SD rats after LAD. Within 30 minutes of injection, rats were euthanized. The heart was removed and set into gelatin and MRI was done on these.

MRI analysis was performed using a 9.4T horizontal bore (60 G/cm, inner bore diameter 120 mm) system (Varian), using Direct Drive console (VJ NMR) with a linear transmit and receiver. ¹⁹F MRI was performed to detect NP-labeled cells while ¹H MRI was done for anatomy of the heart. ¹⁹F MR images were acquired using a purpose built circular surface coil tunable to ¹⁹F. For ¹H imaging, coronal GEMS images of the hearts were taken at matrix size of 128 (later zero filled to 256), 30 averages, field of view 35 × 35 cm, 10 imaging planes of 1mm depth, TE/TR = 4/1.2 ms with a flip angle of 70 degrees. The ¹H images were later isotropically zero-filled by a factor of two and filtered (modified third-order Butterworth filter) before Fourier transformation. For ¹⁹F imaging, coronal GEMS images of the hearts cloned from the ¹H images were taken at matrix size of 256, 60 averages, field of view 35 × 35 cm, 1 imaging plane of 10mm depth, TE/TR = 4/1.2 ms with a flip angle of 90 degrees. All images were Fourier transformed. At all times a phantom was present to allow shimming and pulse calibration, and to aid orientation within the surface coil.

Isolation of CD34⁺ cells from umbilical cord blood (UCB). All human UCB samples were collected from donors, who signed an informed consent form, in compliance with Portuguese legislation. The collection was approved by the ethical committees of Dr. Daniel de Matos Maternity Hospital in Coimbra and Hospital Infante D. Pedro in Aveiro. The samples were stored in sterile bags containing 35 mL of citrate-phosphate-dextrose anticoagulant solution. CD34⁺ cells were isolated from mononuclear cells obtained from UCB samples after Ficoll (Histopaque-1077)

Hybri Max; Sigma-Aldrich, St. Louis, USA) density gradient separation. CD34⁺ cells were positively selected (2 times) using the mini-MACS immunomagnetic separation system (Miltenyi Biotec, Bergisch Gladbach, Germany), according to the manufacturer's instructions. These cells express high levels of CD31 (approximately 85%), incorporate moderate levels of Ac-LDL (approximately 13%) and showed no expression of definitive endothelial marker vWF ³. Therefore these cells are CD34⁺CD45⁺CD31⁺KDR⁻vWF⁻CD14^{- 3}. CD34⁺ cells were immediately used for ROS, Bioplex, viability assays and genetic analysis without further treatment.

Differentiation of CD34⁺ cells into ECs. Isolated CD34⁺ cells were incubated with fluorescentlabeled NPs (500 µg NP for 10⁶ CD34⁺ cells) in serum-free M199 medium (Invitrogen, Carlsbad, USA) for 4 h at 37°C. After incubation, the cells washed 3 times with PBS and the cells labeled with NPs were selected using a FACSAria II cell sorter (BD Biosciences, USA). The sorted cells were transferred onto 1% (w/v) gelatin-coated 96-well plates (2×10⁴ cells/well) and incubated in endothelial growth medium (EGM-2; Lonza, Gaithersburg, MD, USA) with 20% (v/v) fetal bovine serum (FBS; Invitrogen, Carlsbad, USA) and 50 ng/mL vascular endothelial growth factor (VEGF₁₆₅; PrepoTech Inc., Rocky Hill, USA), at 5% CO₂, 37°C. After 5 days and then every other day, half of the volume of the medium was replaced with fresh one. At the end of the differentiation assay, expression of EC markers was evaluated by fluorescence-activated cell sorting (FACS) and immunofluorescence staining. The functionality of the cells was evaluated by their ability to metabolize acetylated low-density lipoprotein (DiI-Ac-LDL; Biomedical Technologies, Stroughton, USA) and form microvessels on top of MatrigelTM (BD Biosciences, San Jose, CA, USA), according to protocols previously described by us⁴.

FACS analyses. Cells were trypsinized, centrifuged and finally resuspended in PBS supplemented with 5% (v/v) FBS. The single cell suspensions were aliquoted (1.5×10^5 cells per condition) and stained with either isotype controls or antigen-specific antibodies: anti-human PECAM1-FITC (BD

Biosciences Pharmingen), KDR/Flk1-PE (R&D Systems, Minneapolis, USA), CD34-PE (Miltenyi Biotec). Cells were analyzed without fixation. FACS Calibur (BD Biosciences, San Diego, CA) and BD Cell Quest Software (BD Biosciences, San Diego, CA) were used for the acquisition and analysis of the data.

Immunostaining analyses. Cells were fixed with 4% (v/v) paraformaldehyde (EMS, Hatfield, USA) for 15-20 min at room temperature. After permeabilizing the cells with 0.1% (v/v) Triton X-100 (Sigma-Aldrich) for 10 min, whenever required, and blocking for 30 min with 1% (w/v) bovine serum albumin (BSA) solution (Sigma-Aldrich), the cells were stained for 1 h with the following primary mouse anti-human monoclonal antibodies: PECAM1, CD34, von Willebrand factor (vWF), α -smooth muscle actin (α -SMA) (all from Dako, Glostrup, Denmark) and VE-cadherin (VE-CAD) (Santa Cruz Biotechnology, Santa Cruz, USA). In each immunofluorescence experiment, an isotype-matched IgG control was used. The binding of primary antibodies to specific cells was detected with anti-mouse IgG Cy3 conjugate (Sigma-Aldrich). The nuclei of the cells were stained with 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich). After the indirect labeling, the cells were examined with a fluorescence microscope (Carl Zeiss International, Germany).

Cell proliferation and viability analyses. HUVECs and CD34⁺ cells were transfected with fluorescent-labeled NPs (500 μ g NP for 4×10⁵ HUVECs or for 1×10⁶ CD34⁺ cells) in M200 medium (Invitrogen, Carlsbad, USA) or QBSF-60 (Quality Biological Inc., Gaithersburg, USA) for 4 h at 37°C. After incubation, the cells washed 3 times with medium and labeled cells were collected using FACSAria II cell sorter. After cell sorting, HUVECs and CD34⁺ cells were counted and seeded on 1% gelatin-coated 24-well (0.25×10⁵ cells/well) or 96-well plates (1×10⁴ cells/well). At different time points, the cells were counted and ATP production was measured using Cell Titer Glo[®] Luminescent Cell Viability Assay kit according to manufacturer's instructions. Briefly, the equal volumes of CellTiter-Glo[®] Reagent and cell culture medium present in each well were mixed

and incubated at room temperature for 2 min on an orbital shaker to induce cell lysis. Then, the cells were transferred into opaque-walled multiwell plates and luminescence measurements were done using Power Wave XS (Bio-TEK, VT, USA) luminometer. The medium without cells was used as a blank control.

Cell membrane integrity was assessed by a lactate dehydrogenase (LDH) assay kit (Sigma-Aldrich). Half of the culture volume of the culture medium was removed into a flat-bottom 96-well plate. The LDH assay mixture was added to each sample in a volume equal to twice of the medium removed for testing. The plate was incubated at room temperature for 30 min in the dark. Absorbance measurements were done at the wavelength of 490 nm with the background measurement at the wavelength of 690 nm. LDH release from each sample was normalized to LDH release in untreated cells.

ROS analyses. The production of intracellular reactive oxygen species (ROS) was measured by flow oxidation-sensitive 5-(and-6)-carboxy-2",7"cytometry using the probe. dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA; Invitrogen, Carlsbad, CA, USA). Briefly, carboxy-H₂DCFDA working solution (10 µM) was prepared in cell culture medium without serum or other supplements. HUVECs in 24-well plates (2×10⁵ cells/well, in 500 µL EGM-2) were incubated with different concentrations of NPs (500 and 1000 µg/mL) for 4 h at 37°C. After incubation time, the cell media were collected and used immediately for Bioplex assay. The cells were washed with serum-free M200 for 3 times and the medium was replaced with EGM-2 for 24 h samples. These cell samples were incubated at 37°C for additional 20 h. 4 h samples were immediately incubated in 500 µL carboxy-H₂DCFDA working solution at 37°C in dark for 2 h. Then the cells were washed twice with cold PBS and resuspended in pre-warmed EGM-2 during 1 h at 37°C for the cellular esterases to hydrolyze the acetate groups and render the dye responsive to

oxidation. Finally, cells were harvested and characterized by FACS analysis (FACS Calibur, BD Biosciences, San Diego, CA).

The production of ROS in CD34⁺ cells after the incubation with NPs was calculated using the freshly-isolated CD34⁺ cells. 200,000 cells in 200 μ L medium were used for each sample and triplicates were used for each condition. The cells were incubated with different concentrations of NPs (500 and 1000 μ g/mL for 10⁶ cells) for 4 h at 37°C. Then, the steps described above were followed for the ROS measurements. For both cell types, cells treated with H₂O₂ (1 mM) and incubated with probe were used as positive control while the cells incubated only with probe was used as negative control.

Gene expression analyses. Freshly isolated CD34⁺ cells or HUVECs were incubated with fluorescent-labeled NPs (500 μ g NP for 1 million CD34⁺ cells or 4×10⁵ HUVECs) in M200 medium (Invitrogen, Carlsbad, USA) for 4 h at 37°C. After incubation, the cells washed 3 times with M200 and the cells labeled with NPs were collected using a FACSAria II cell sorter. After cell sorting, HUVECs were incubated in EGM-2 and CD34⁺ cells were incubated in QBSF (supplemented with 50 ng/mL Stem Cell Factor (SCF) and 50 ng/mL Flt-3) up to 1 week. At time points 24 h and 7 d, cells with or without NPs were homogenized in Trizol reagent (Invitrogen) and total RNA was extracted by a RNeasy Mini Kit (Qiagen, Valencia, USA), according to manufacturer's instructions. The RNA concentration was measured by a NanoDrop ND-1000 UV-VIS spectrophotometer. The quality of the RNA was assessed in the Agilent 2100 Bioanalyser (G2943CA) using the RNA 6000 Pico Kit (5067-1513). Before labeling, a mixture of ten *in vitro* synthesized RNAs were added to total RNA to allow for hybridization quality control and normalization of the microarrays. The RNA was amplified and labeled according to the One-Color Microarray-Based Gene Expression Analysis (Agilent). The efficiency of cRNA synthesis and dye incorporation was measured using NanoDrop spectrophotometer and samples with either a yield

below 1.65 μ g or a specific activity (pmol Cy3 per μ g cRNA) below 6 were not considered for hybridization.

Labeled cRNA was hybridized to the whole human genome (4×44K) microarray (G4112F from Agilent Technologies). For each sample, a solution of cyanine 3-labelled cRNA (1.65 μ g in 41.8 μ L with DNAse-free water) was mixed with Agilent 10× blocking agent (11 μ L) and fragmentation buffer (2.2 μ L) and incubated at 60°C for exactly 30 min to fragment RNA. To stop the fragmentation reaction, 2x GEx hybridization buffer (55 μ L) was added. After a short spin-down, the labeled cRNA mixture was applied to a microarray slide, assembled in a SureHyb hybridization chamber fitted with a gasket slide (Agilent), and incubated for 18 h at 65°C in a hybridization oven (G2545A, SHEL LAB - Agilent), with 10 rpm rotation speed. Slides were washed as described in the Agilent one-color microarray-based gene expression analysis protocol. Afterwards, the microarray and gasket slide (up to 4 slides) were washed in fresh 250 mL of GE Wash Buffer 1 and the slides (up to 4 slides) were washed in fresh 250 mL of GE Wash Buffer 1 solution at room temperature, during 1 min, with gentle agitation from a magnetic stirrer. A second wash step was carried out by immersing the slides in GE Wash Buffer 2 solution, previously warmed to 37°C, during 1 min, also with gentle magnetic stirring. Finally, slides were dried by centrifugation at 800 rpm for 3 min.

Microarrays were scanned in the Agilent B scanner (G2565BA) using specific scanning protocols for gene expression microarrays and the format 4×44K. Agilent feature extraction image analysis software (Version 10.7.3.1) was used to obtain fluorescence intensities from raw microarray image files.

Analysis of raw data was performed using BRB-ArrayTools v3.4.0 developed by Dr. Richard Simon and BRB-ArrayTools Development Team⁵. BRB-Array Tools incorporates the Bioconductor R functions and the R programming language required for raw data normalization within arrays.

Each gene's measured intensity was median normalized to correct for differences in the labelling efficiency between samples. This analysis provided a median normalized dataset that was subjected to statistical analysis and clustering using MeV software⁶. Here, genes were identified as differentially expressed using the following criteria: (i) Test-design: between subjects (test vs control); (ii) Variance assumption: Welch approximation; (iii) P-value parameters: p-values based on t-distribution; alpha critical p-value =0.01; (iv) False discovery corrections: just alpha.

The previous step provided a differentially expressed genes (DEGs) list that we used to calculate the M-value. We considered as differentially expressed a variation equal or higher than 2-fold between test condition and the control. Only genes with significance level below an alpha corrected p-value of 10⁻³ were considered as differentially expressed. The down- and up-regulated genes were analyzed using DAVID 6.7 (Database for Annotation, Visualization and Integrated Discovery, http://david.abcc.ncifcrf.gov/) web-accessible program to identify the altered cellular processes and functions.

TLR experiments. CD34⁺ cells were treated with 500 µg/mL NPs for 4 h as described previously. Untreated cells were used as controls. After 4 h incubation with NPs, cells were washed several times and resuspended in fresh medium. To activate TLRs, cell culture medium was supplemented with human TLR1-9 agonist kit solutions from InvivoGen (1 µg/mL Pam3CSK4, 10⁸ cells/mL HKLM, 50 µg/mL Poly(I:C), 10 µg/mL LPS, 1 µg/mL *S. typhimurium* flagellin, 1 µg/mL FSL-1, 2.5 µg/mL Imiquiomod, 2.5 µg/mL ssRNA40, 10 µg/mL ODN2006 and endotoxin-free water). Cells were incubated with TLR agonists for 6 h. After 6 h, cells were collected separately and centrifuged at 300g for 10 min. Supernatants were collected, immediately frozen and kept at -80°C until Bioplex measurements.

Reverse transcription and quantitative real time polymerase chain reaction (qRT-PCR) analyses. Untreated and treated CD34⁺ cells were homogenized in Trizol reagent (Life Technologies) and

total RNA was extracted using the RNeasy mini kit (Qiagen), according to manufacturer's instructions. In all cases, cDNA was prepared from 1 μ g total RNA using Taqman Reverse transcription reagents (Applied Biosystems). Quantitative real time PCR (qRT-PCR) was performed using Power SYBR Green PCR Master Mix (Applied Biosystems) and the detection was carried out in a 7500 Fast Real-Time PCR System (Applied Biosystems). Quantification of target genes was performed relatively to the reference GAPDH gene: relative expression = $2^{[-(Ct_{sample}-Ct_{GADPH})]}$. Primer sequences are given in **Supplementary Table 1**.

Cytokine secretion analyses. Cell culture supernatants were evaluated for the presence and concentrations of cytokines using a Bio-Plex Pro Human Cytokine 17-Plex Panel Assay (Bio-Rad, Hercules, CA, USA), according to manufacturer's instructions, in a Bio-Plex 200 System (Bio-Rad). The human 17-plex panel evaluated the presence of the following analytes: interleukin-1 β (IL-1 β), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8; IL-10, IL-12(p70), IL-13, IL-17, granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interferon- γ (IFN- γ), monocyte chemotactic protein (monocyte chemotactic activating factor [MCP-1 (MCAF)], macrophage inflammatory protein- β (MIP-1 β) and tumor necrosis factor- α (TNF- α). Supernatant media samples were collected, centrifuged to remove precipitates and the measurements were done immediately. A standard range of 0.2 to 3,200 pg/mL was used. Four replicates were used for the samples and the controls.

Statistical analysis. An unpaired t test or one-way ANOVA analysis of variance with Bonferroni post-test was performed for statistical tests using GraphPad Prism software (San Diego, CA, USA, <u>http://www.graphpad.com/</u>). Results were considered significant when P<0.05. Data are shown as mean \pm SEM.

References

1. Horisawa E, Kubota K, Tuboi I, et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. *Pharm Res.* 2002;19(2):132-139.

2. Maia J, Santos T, Aday S, et al. Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. *ACS Nano*. 2011;5(1):97-106.

3. Pedroso DC, Tellechea A, Moura L, et al. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. *PLoS One*. 2011;6(1):e16114.

4. Ferreira LS, Gerecht S, Shieh HF, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. *Circ Res.* 2007;101(3):286-294.

5. Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y. Analysis of gene expression data using BRB-ArrayTools. *Cancer Inform*. 2007;3:11-17.

6. Saeed AI, Bhagabati NK, Braisted JC, et al. TM4 microarray software suite. *Methods Enzymol.* 2006;411:134-193.

Gene	Forward sequence	Reverse sequence
GAPDH	AGCCACATCGCTCAGACACC	GTACTCAGCGCCAGCATCG
MMP-9	CTTCCAGTACCGAGAGAAA	CACCTGGTTCAACTCACT
MME	ATATTCTGCCAGAGATCTTCAA	AGTTGCTGTTTCTGAGGTT
IL-8	TTGGCAGCCTTCCTGATTTC	AACTTCTCCACAACCCTCTG
TNF-α	CCATGTTGTAGCAAACCC	GAGTAGATGAGGTACAGGC
S100A12	GGGAATTGTCAATATCTTCCAC	CGACCTGTTCATCTTGATTAG
MT2A	GCTCCCAGATGTAAAGAAC	AAAGGAATATAGCAAACGGT
MT1X	TACAACCCTGACCCGTTTG	TTGCCATTCACATATTTCATAGA
PROK2	GTCTTACTTGTGATTGTGCCAAAC	AACCAGTTCCATAATGCCTTACAC
TLR1	CCCTACAAAAGGAATCTGTATC	TGCTAGTCATTTTGGAACAC
TLR2	CTTTCAACTGGTAGTTGTGG	GGAATGGAGTTTAAAGATCCTG
TLR3	AGATTCAAGGTACATCATGC	CAATTTATGACGAAAGGCAC
TLR4	AGTTATTGCCTACTAAGTAATGA	CTTCCTTCCTGCCTCTAG
TLR5	ATCTTTCACATGGGTTTGTC	TTCCCCCAGAAGGTTATATG
TLR6	AGAGATCTTGAATTTGGACTC	TGTCTTTGGTCATGATGTTG
TLR7	AGATATAGGATCACTCCATGC	CTTCCAAAATGGAATGTAGAGG
TLR8	TGGAAAACATGTTCCTTCAG	TGCTTTTTCTCATCACAAGG
TLR9	AAATCCCTCATATCCCTGTC	TTGTAATAACAGTTGCCGTC

Supplementary Table 1. Primers used for qRT-PCR analyses.

Supplementary Table 2. Genes that were down-regulated on CD34⁺ cells exposed to NP210-PFCE for 4 h followed by 20 h of culture in the absence of NPs (total time: 24 h).

Unique ID	Target ID	Gene Symbol	Gene Name	M Value
A_23_P373017	D00044	CCL3	chemokine (C-C motif) ligand 3	-5.56
A_24_P228130	NM_001001437	CCL3L3	chemokine (C-C motif) ligand 3-like 3	-5.55
A_23_P214079	NM_003122	SPINK1	serine peptidase inhibitor, Kazal type 1	-5.21
A_23_P150609	NM_000612	IGF2	insulin-like growth factor 2 (somatomedin A)	-5.09
A_23_P17053	NM_019618	IL36G	interleukin 36, gamma	-5.05
A_23_P89431	NM_002982	CCL2	chemokine (C-C motif) ligand 2	-4.83
A_23_P321920	NM_001001437	CCL3L3	chemokine (C-C motif) ligand 3-like 3	-4.75
A_23_P343398	NM_001838	CCR7	chemokine (C-C motif) receptor 7	-4.69
A_23_P71037	NM_000600	IL6	interleukin 6 (interferon, beta 2)	-4.36
			pro-platelet basic protein (chemokine (C-X-C motif)	
A_23_P121596	NM_002704	PPBP	ligand 7)	-4.09
A_23_P153185	NM_001143818	SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	-3.99
A_23_P15146	NM_001012631	IL32	interleukin 32	-3.98
A_23_P207564	NM_002984	CCL4	chemokine (C-C motif) ligand 4	-3.97
A_23_P1691	NM_002421	MMP1	matrix metallopeptidase 1 (interstitial collagenase)	-3.96
A_23_P393620	NM_006528	TFPI2	tissue factor pathway inhibitor 2	-3.95
A_24_P245379	NM_002575	SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	-3.73
A_23_P85503	NM_020393	PGLYRP4	peptidoglycan recognition protein 4	-3.72
A_23_P94533	NM_001912	CTSL1	cathepsin L1	-3.66
A_24_P85888	NM_006922	SCN3A	sodium channel, voltage-gated, type III, alpha subunit	-3.65
A_23_P404494	NM_002185	IL7R	interleukin 7 receptor	-3.48
A_32_P26092	NM_003327	TNFRSF4	tumor necrosis factor receptor superfamily, member 4	-3.47
A_23_P256470	NM_000905	NPY	neuropeptide Y	-3.45
A_24_P79403	NM_002619	PF4	platelet factor 4	-3.40
	_		signaling lymphocytic activation molecule family member	
A_23_P62652	NM_003037	SLAMF1	1	-3.30

A 24 P036145	NM 138736	GNA01	guanine nucleotide binding protein (G protein), alpha	3 25
A 22 D220/8	NM 002065	S100A0	S100 calcium binding protein A0	-3.23
A_23_F23046	NM_000048	DDI	proloatin	-3.23
A_32_F03010	NIVI_000946		linecalin 6	-5.21
A_23_P63164	INIVI_198940		S100 seleiens hinding matein A9	-5.14
A_23_P434809	NM_002964	SIUUA8	S100 calcium binding protein A8	-3.01
A_23_P8640	NM_001039966	GPER	G protein-coupled estrogen receptor 1	-3.01
A_23_P125278	NM_005409	CXCLII	chemokine (C-X-C motif) ligand 11	-2.98
A_23_P51936	NM_001561	TNFRSF9	tumor necrosis factor receptor superfamily, member 9	-2.98
A_23_P398566	NM_173200	NR4A3	nuclear receptor subfamily 4, group A, member 3	-2.98
A_23_P129665	NM_005353	ITGAD	integrin, alpha D	-2.97
1 00 D100445			granzyme A (granzyme 1, cytotoxic T-lymphocyte-	• • • •
A_23_P133445	NM_006144	GZMA	associated serine esterase 3)	-2.91
A_23_P209129	NM_002288	LAIR2	leukocyte-associated immunoglobulin-like receptor 2	-2.89
A_24_P252945	NM_032966	CXCR5	chemokine (C-X-C motif) receptor 5	-2.88
A_23_P7582	NM_003202	TCF7	transcription factor 7 (T-cell specific, HMG-box)	-2.83
A_23_P93348	NM_002341	LTB	lymphotoxin beta (TNF superfamily, member 3)	-2.82
A_24_P303091	NM_001565	CXCL10	chemokine (C-X-C motif) ligand 10	-2.81
A_23_P404481	NM_001400	S1PR1	sphingosine-1-phosphate receptor 1	-2.77
A_23_P312920	NM_006235	POU2AF1	POU class 2 associating factor 1	-2.76
A_23_P51767	NM_001765	CD1C	CD1c molecule	-2.76
A 23 P212061	NM 007289	MME	membrane metallo-endopeptidase	-2.75
A 24 P290751	NM 004416	DTX1	deltex homolog 1 (Drosophila)	-2.71
A_23_P111126	L06175	HCP5	HLA complex P5 (non-protein coding)	-2.71
A_23_P29152	NM_007128	VPREB1	pre-B lymphocyte 1	-2.69
A_23_P203882	NM_002429	MMP19	matrix metallopeptidase 19	-2.69
A_24_P260101	NM_007289	MME	membrane metallo-endopeptidase	-2.68
A 23 P359245	NM 000245	MET	met proto-oncogene (hepatocyte growth factor receptor)	-2.66
A_23_P31816	NM_005217	DEFA3	defensin, alpha 3, neutrophil-specific	-2.64
A 23 P212360	NM 006641	CCR9	chemokine (C-C motif) receptor 9	-2.62
A_23_P315964	NM_173568	UMODL1	uromodulin-like 1	-2.59

A_23_P38630	NM_001050	SSTR2	somatostatin receptor 2	-2.57
A_23_P82651	NM_002523	NPTX2	neuronal pentraxin II	-2.54
A_23_P211233	NM_001849	COL6A2	collagen, type VI, alpha 2	-2.52
A_32_P87013	NM_000584	IL8	interleukin 8	-2.49
A_24_P17870	NR_040662	HCP5	HLA complex P5 (non-protein coding)	-2.46
A_23_P38795	NM_002029	FPR1	formyl peptide receptor 1	-2.45
A_23_P207058	NM_003955	SOCS3	suppressor of cytokine signaling 3	-2.43
A_23_P97141	NM_002922	RGS1	regulator of G-protein signaling 1	-2.43
A_23_P4662	NM_005178	BCL3	B-cell CLL/lymphoma 3	-2.42
A_23_P116371	NM_152866	MS4A1	membrane-spanning 4-domains, subfamily A, member 1 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase,	-2.39
A_23_P40174	NM_004994	MMP9	92kDa type IV collagenase)	-2.38
A_23_P72096	NM_000575	IL1A	interleukin 1, alpha	-2.35
A_23_P133408	NM_000758	CSF2	colony stimulating factor 2 (granulocyte-macrophage)	-2.35
A_24_P20607	NM_005409	CXCL11	chemokine (C-X-C motif) ligand 11	-2.35
A_23_P209055	NM_001771	CD22	CD22 molecule	-2.33
A_23_P77612	NM_172229	KREMEN2	kringle containing transmembrane protein 2	-2.32
A_24_P254106	AK026467	CD22	CD22 molecule	-2.32
A_23_P119202	NM_001252	CD70	CD70 molecule	-2.31
A_32_P32254	NM_001848	COL6A1	collagen, type VI, alpha 1	-2.30
A_23_P74001	NM_005621	S100A12	S100 calcium binding protein A12	-2.29
A_23_P98410	NM_000073	CD3G	CD3g molecule, gamma (CD3-TCR complex)	-2.27
A_24_P318656	NM_000212	ITGB3	integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	-2.26
A_23_P163402	NM_000499	CYP1A1	cytochrome P450, family 1, subfamily A, polypeptide 1	-2.26
A_23_P119478	NM_005755	EBI3	Epstein-Barr virus induced 3	-2.23
A_23_P45871	NM_006820	IFI44L	interferon-induced protein 44-like	-2.22
A_32_P85500	NR_040662	HCP5	HLA complex P5 (non-protein coding)	-2.22
A_23_P121695	NM_006419	CXCL13	chemokine (C-X-C motif) ligand 13	-2.20
A_24_P411121	NM_148901	TNFRSF18	tumor necrosis factor receptor superfamily, member 18	-2.20
A_23_P310274	NM_002770	PRSS2	protease, serine, 2 (trypsin 2)	-2.18
A 32 P94444	NM 002770	PRSS2	protease, serine, 2 (trypsin 2)	-2.16

14	NM_014879	purinergic receptor P2Y, G-protein coupled, 14	-2.16
4	NM_002460	interferon regulatory factor 4	-2.16
1	NM_002648	pim-1 oncogene	-2.15
		phospholipase A2, group IVC (cytosolic, calcium-	
G4C	NM_003706	independent)	-2.12
.1	NM_002981	chemokine (C-C motif) ligand 1	-2.11
D	NM_004010	dystrophin	-2.07
31	NM_000448	recombination activating gene 1	-2.07
N7	NM_004615	tetraspanin 7	-2.05
		chemokine (C-X-C motif) ligand 1 (melanoma growth	1
L1	NM_001511	stimulating activity, alpha)	-2.01
В	NM_006509	v-rel reticuloendotheliosis viral oncogene homolog B	-2.01

Supplementary Table 3. Genes that were up-regulated on CD34⁺ cells exposed to NP210-PFCE for 4 h followed by 20 h of culture in the absence of NPs (total time: 24 h).

Unique ID	Target ID	Gene Symbol	Gene Name	M Value
A_23_P15174	NM_005949	MT1F	metallothionein 1F	3.86
A_24_P97342	NM_021935	PROK2	prokineticin 2	3.77
A_23_P110531	NM_013409	FST	follistatin	3.63
A_23_P66241	NM_176870	MT1M	metallothionein 1M	3.54
A_23_P201538	NM_002228	JUN	jun proto-oncogene	3.46
A_23_P106194	NM_005252	FOS	FBJ murine osteosarcoma viral oncogene homolog	3.39
A_24_P42264	NM_000239	LYZ	lysozyme	3.28
A_23_P130961	NM_001972	ELANE	elastase, neutrophil expressed	3.08
A_24_P125096	NM_005952	MT1X	metallothionein 1X	2.99
A_23_P206724	NM_175617	MT1E	metallothionein 1E	2.98
A_23_P63343	NM_021995	UTS2	urotensin 2	2.92
A_23_P303242	NM_005952	MT1X	metallothionein 1X	2.92
A_23_P414343	NM_005951	MT1H	metallothionein 1H	2.83
A_23_P89192	NM_000502	EPX	eosinophil peroxidase	2.81
A_23_P156327	NM_000358	TGFBI	transforming growth factor, beta-induced, 68kDa	2.81
			ribonuclease, RNase A family, 2 (liver, eosinophil-	
A_23_P151637	NM_002934	RNASE2	derived neurotoxin)	2.76
A_23_P427703	NR_001447	MT1L	metallothionein 1L (gene/pseudogene)	2.75
A_23_P60933	NM_005950	MT1G	metallothionein 1G	2.73
A_23_P163025	NM_002935	RNASE3	ribonuclease, RNase A family, 3	2.72
A_23_P404536	NM_005021	ENPP3	ectonucleotide pyrophosphatase/phosphodiesterase 3	2.70
			ribonuclease, RNase A family, 2 (liver, eosinophil-	
A_32_P1712	NM_002934	RNASE2	derived neurotoxin)	2.69
A_23_P141173	NM_000250	MPO	myeloperoxidase	2.62
A_23_P500464	NM_001844	COL2A1	collagen, type II, alpha 1	2.47
A_23_P116898	NM_000014	A2M	alpha-2-macroglobulin	2.47
A_24_P236251	NM_003836	DLK1	delta-like 1 homolog (Drosophila)	2.47
A_23_P37983	NM_005947	MT1B	metallothionein 1B	2.45
A_23_P43337	NM_144966	FREM1	FRAS1 related extracellular matrix 1	2.43
			proteoglycan 2, bone marrow (natural killer cell	

			activator, eosinophil granule major basic protein)	
A_23_P163782	NM_005951	MT1H	metallothionein 1H	2.36
A_23_P137935	NM_002432	MNDA	myeloid cell nuclear differentiation antigen	2.36
Ā_23_P8981	NM_000349	STAR	steroidogenic acute regulatory protein	2.34
A_24_P11825	NM_001123041	CCR2	chemokine (C-C motif) receptor 2	2.29
A_24_P453970	AV691872	ENPP3	Ectonucleotide pyrophosphatase/phosphodiesterase 3	2.22
A_23_P157879	NM_002003	FCN1	ficolin (collagen/fibrinogen domain containing) 1	2.19
A_23_P215913	NM_001831	CLU	clusterin	2.15
			hepatocyte growth factor (hepapoietin A; scatter factor)	
A_24_P944788	ENST00000222390	HGF-001	[Source:HGNC Symbol;Acc:4893]	2.12
A_23_P212354	NM_001123041	CCR2	chemokine (C-C motif) receptor 2	2.08
A_24_P45620	NM_021995	UTS2	urotensin 2	2.06

Supplementary Table 4. Genes that were down-regulated on CD34⁺ cells exposed to NP210-PFCE for 4 h followed by 7 days of culture in the absence of NPs.

Unique ID	Target ID	Gene Symbol	Gene Name	M Value
A_23_P26965	NM_005408	CCL13	chemokine (C-C motif) ligand 13	-4.33
A_23_P15146	NM_001012631	IL32	interleukin 32	-3.08
A_23_P256425	NM_014479	ADAMDEC1	ADAM-like, decysin 1	-2.57
A_23_P137366	NM_000491	C1QB	complement component 1, q subcomponent, B chain	-2.56
A_23_P340698	NM_002426	MMP12	matrix metallopeptidase 12 (macrophage elastase)	-2.55
A_23_P149545	NM_003528	HIST2H2BE	histone cluster 2, H2be	-2.47
A_24_P260101	NM_007289	MME	membrane metallo-endopeptidase	-2.44
A_23_P101407	NM_000064	C3	complement component 3	-2.35
A_23_P106194	NM_005252	FOS	FBJ murine osteosarcoma viral oncogene homolog matrix metallopeptidase 9 (gelatinase B, 92kDa	-2.17
A_23_P40174	NM_004994	MMP9	gelatinase, 92kDa type IV collagenase)	-2.11
A 23 P74001	NM 005621	S100A12	S100 calcium binding protein A12	-2.04

Supplementary Table 5. Genes that were up-regulated on CD34⁺ cells exposed to NP210-PFCE for 4 h followed by 7 days of culture in the absence of NPs.

Unique ID	Target ID	Gene Symbol	Gene Name	M Value
-	-		myxovirus (influenza virus) resistance 1, interferon-inducible protein	
A_23_P17663	NM_002462	MX1	p78 (mouse)	4.58
A_23_P121596	NM_002704	PPBP	pro-platelet basic protein (chemokine (C-X-C motif) ligand 7)	4.09
A_23_P66241	NM_176870	MT1M	metallothionein 1M	3.43
A_23_P131785	NM_001725	BPI	bactericidal/permeability-increasing protein	3.25
A_23_P48212	NM_016509	CLEC1B	C-type lectin domain family 1, member B	3.21
A_23_P53137	NM_000559	HBG1	hemoglobin, gamma A	3.12
A_23_P64539	NM_000559	HBG1	hemoglobin, gamma A	2.88
A_23_P17481	NM_023068	SIGLEC1	sialic acid binding Ig-like lectin 1, sialoadhesin	2.84
A_23_P326080	NM_001925	DEFA4	defensin, alpha 4, corticostatin	2.71
A_23_P304897	NM_000623	BDKRB2	bradykinin receptor B2	2.60
A_23_P15174	NM_005949	MT1F	metallothionein 1F	2.44
A_24_P97342	NM_021935	PROK2	prokineticin 2	2.38
A_23_P206724	NM_175617	MT1E	metallothionein 1E	2.33
A_23_P137697	NM_003005	SELP	selectin P (granule membrane protein 140kDa, antigen CD62)	2.27
A_24_P125096	NM_005952	MT1X	metallothionein 1X	2.23
A_23_P135486	NM_016633	AHSP	alpha hemoglobin stabilizing protein	2.22
A_23_P37856	NM_000558	HBA1	hemoglobin, alpha 1	2.20
A_23_P87346	NM_000519	HBD	hemoglobin, delta	2.18
A_23_P60933	NM_005950	MT1G	metallothionein 1G	2.18
A_23_P303242	NM_005952	MT1X	metallothionein 1X	2.15
A_23_P6263	NM_002463	MX2	myxovirus (influenza virus) resistance 2 (mouse)	2.14
A_23_P427703	NR_001447	MT1L	metallothionein 1L (gene/pseudogene)	2.14
A_23_P414343	NM_005951	MT1H	metallothionein 1H	2.11
A_23_P354146	NM_005546	ITK	IL2-inducible T-cell kinase	2.04
A 23 P26457	NM 000517	HBA2	hemoglobin, alpha 2	2.01

Supplementary radie o. Significantly affected biological processes after 24 if a
--

Significantly affected biological processes for CD34 ⁺ cells after 24 hours					
	DAVID category	N° of genes	List of genes		
	Immune response	41	CXCL1, CCL1, CSF2, IL1F9, CCL3, CCL2, VPREB1, RAG1, CD70, IL32, PF4, IF144L, CXCL11, IL7R, TNFRSF4, CCL4, CXCL10, LOC100133678, PGLYRP4, CCL3L1, CCL3L3, MS4A1, BCL3, IGKC, LTB, EBI3, IL1A, POU2AF1, IL6, TCF7, IL18RAP, IL8, GZMA, RELB, CD1C, LOC652493, HLA-DQA1, CCR9, CCR7, RGS1, PPBP, CXCL13, P2RY14, ITGAD, LOC650405, LOC100130100		
	Chemotaxis	17	CCL1, CXCL1, IL6, CCL3, CCL2, IL8, S100A9, FPR1, PF4, CXCL11, CCL4, CXCL10, CCR9, CCR7, PPBP, CXCL13, CCL3L1, CCL3L3		
	Defense response	26	CXCL1, CCL3, CCL2, S100A8, INS-IGF2, S100A9, IL32, CXCL11, TNFRSF4, CCL4, CXCL10, PGLYRP4, CCL3L1, INS, CCL3L3, BCL3, HCP5, IL1A, IL6, IL18RAP, IL8, IGF2, S100A12, CCR9, CCR7, PPBP, CXCL13, DEFA3, PLA2G4C		
	Response to wounding	24	CXCL1, CCL3, CCL2, S100A8, INS-IGF2, S100A9, PF4, ITGB3, CXCL11, CCL4, TNFRSF4, CXCL10, CCL3L1, INS, CCL3L3, TFP12, IL1A, IL6, IL18RAP, IL8, CYP1A1, IGF2, S100A12, CCR7, CXCL13, SERPINB2, PLA2G4C		
	Locomotory behavior	18	CCL1, CXCL1, IL6, CCL3, GNAO1, CCL2, IL8, S100A9, FPR1, PF4, CXCL11, CCL4, CXCL10, CCR9, CCR7, PPBP, CXCL13, CCL3L1, CCL3L3		
	Inflammatory response	19	CXCL1, IL6, CCL3, IL18RAP, CCL2, IL8, S100A8, INS-IGF2, S100A9, IGF2, CXCL11, TNFRSF4, CCL4, S100A12, CXCL10, CCR7, INS, CXCL13, CCL3L1, CCL3L3, PLA2G4C, IL1A		
	Behavior	21	CCL1, CXCL1, IL6, CCL3, GNAO1, CCL2, IL8, S100A9, MET, FPR1, PF4, NR4A3, CXCL11, CCL4, CXCL10, CCR9, CCR7, PPBP, NPY, CXCL13, CCL3L1, CCL3L3		
	Cell activation	16	CSF2, IL6, CD3G, IL8, INS-IGF2, RELB, RAG1, IGF2, PF4, IL7R, TNFRSF4, SLAMF1, CXCR5, INS, MS4A1, BCL3, IRF4, LTB		
	Leukocyte activation	13	CSF2, CD3G, IL8, INS-IGF2, RELB, RAG1, IGF2, IL7R, SLAMF1, TNFRSF4, CXCR5, INS, MS4A1, BCL3, IRF4		
Down-regulated	Lymphocyte activation	11	CD3G, INS-IGF2, RELB, RAG1, IGF2, IL7R, SLAMF1, TNFRSF4, CXCR5, INS, MS4A1, BCL3, IRF4		
	Regulation of apoptosis	19	CSF2, IL6, CD3G, CCL2, INS-IGF2, SOCS3, MMP9, GPR109B, GPR109A, PIM1, RAG1, CD70, IGF2, PF4, TNFRSF4, TNFRSF9, INS, TNFRSF18, SERPINB2, BCL3, LTB, IL1A		
	Lymph node development	4	CXCR5, CXCL13, IL7R, LTB		
	T cell activation	8	CD3G, INS-IGF2, INS, RELB, RAG1, BCL3, IGF2, IRF4, IL7R, TNFRSF4		
	Cell-cell signaling	16	IL1F9, CCL3, IL6, INS-IGF2, S100A9, MME, CD70, IGF2, CXCL11, CCL4, CXCL10, SSTR2, NPY, INS, CXCL13, NPTX2, DMD, LTB		
	Cell surface receptor linked signal transduction	31	CXCL1, CCL3, CCL2, INS-IGF2, GPR109B, GPR109A, FPR1, PF4, ITGB3, CXCL11, IL7R, CXCL10, S1PR1, CXCR5, INS, PRL, TCF7, GNAO1, CD3G, IL18RAP, IL8, GPER, DTX1, MET, IGF2, CCR9, CCR7, SSTR2, RGS1, PPBP, NPY, KREMEN2, P2RY14, ITGAD		
	Regulation of cytokine	9	IL6, INS-IGF2, INS, BCL3, IGF2, PF4, IRF4, TNFRSF4, LTB, EBI3,		
	Negative regulation of apoptosis	12	CSF2, IL6, CCL2, INS-IGF2, SOCS3, RAG1, PIM1, PF4, IGF2, INS, TNFRSF18, SERPINB2, BCL3, IL1A		
	Response to bacterium	9	IL6, CCL2, CYP1A1, PPBP, PGLYRP4, SOCS3, DEFA3, BCL3, \$100A12		
	Cell chemotaxis	5	IL6, CCL2, IL8, S100A9, PF4		
	Regulation of cytokine biosynthetic process	6	IL6, BCL3, IRF4, LTB, EBI3, IL1A		
	Immune system development	10	CSF2, CXCR5, CXCL13, MMP9, RELB, RAG1, BCL3, IRF4, IL7R, LTB		
	Regulation of cell proliferation	17	CXCL1, CSF2, IL6, CCL2, IL8, INS-IGF2, IGF2, TNFRSF4, SLAMF1, CXCL10, TNFRSF9, SSTR2, S1PR1, INS, CCL3L1, CCL3L3, LTB, PRL, EBI3, IL1A		
	G-protein coupled receptor protein signaling pathway	21	CXCL1, CCL3, GNAO1, CCL2, IL8, INS-IGF2, GPER, GPR109B, GPR109A, FPR1, IGF2, PF4, CXCL11, CXCL10, CCR9, SSTR2, CCR7, S1PR1, RGS1, PPBP, CXCR5, NPY, INS, P2RY14		
	Collagen catabolic process	4	MMP9, PRSS2, MMP19, MMP1		
	Positive regulation of cytokine biosynthetic process	5	BCL3, IRF4, LTB, EBI3, IL1A		
	Leukocyte differentiation	7	CSF2, MMP9, RELB, RAG1, BCL3, IRF4, IL7R		
	Response to inorganic substance	8	FOS, A2M, STAR, EPX, JUN, MPO, MT1H, MT1X		
Up-regulated	Defense response	10	FOS, PROK2, A2M, RNASE3, PRG2, CCR2, CLU, MNDA, LYZ, MPO		
	Response to oxidative stress	6	FOS, STAR, EPX, JUN, CLU, MPO		

Significantly affected biological processes for CD34 ⁺ cells after 7 days						
	DAVID category	Nº of genes	List of genes			
Down-regulated	Defense response	9	C1QB, FOS, CCL13, LOC100133511, LOC653879, C3, HIST2H2BE, IL32, S100A12			
Up-regulated	Defense response	12	SELP, ITK, SIGLEC1, PROK2, BPI, PPBP, IL8, DEFA4, BDKRB2, MX1, MX2, CLEC1B			

Significantly affected cellular compartments for CD34 ⁺ cells after 24 hours					
	DAVID category	Nº of genes	List of genes		
Down-regulated	Extracellular region part	34	CXCL1, CCL1, CSF2, IL1F9, CCL3, CCL2, INS-IGF2, MMP9, CD70, PF4, IL32, CXCL11, CCL4, MMP1, CXCL10, INS, CCL3L1, PRSS2, CCL3L3, COL6A2, COL6A1, TFP12, LTB, IL1A, EBI3, IL6, IL8, MMP19, IGF2, PPBP, NPY, CXCL13, DEFA3, SERPINB2		
	Extracellular region	50	INS-IGF2, MMP9, SPINK1, CXCL11, MMP1, CXCL10, PGLYRP4, CCL3L1, CCL3L3, LTB, PRL, TFP12, IL1A, EB13, GZMA, LAIR2, MMP19, LOC652493, UMODL1, PPBP, SERPINB2, DEFA3, CXCL1, CCL1, IL1F9, CSF2, CCL3, CCL2, VPREB1, CD70, PF4, IL32, IL7R, CCL4, CTSL1, NPTX2, INS, PRSS2, COL6A2, TNFRSF18, COL6A1, IGKC, IL6, IL8, IGF2, NPY, LCN6, CXCL13, LOC650405, LOC100130100		
	Extracellular space	29	CXCL1, CCL1, CSF2, IL1F9, CCL3, CCL2, INS-IGF2, MMP9, CD70, PF4, IL32, CXCL11, CCL4, CXCL10, CCL3L1, INS, PRSS2, CCL3L3, LTB, IL1A, EBI3, IL6, IL8, IGF2, PPBP, NPY, CXCL13, SERPINB2, DEFA3		
	Intergral to plasma membrane/ intrinsic to plasma membrane	24	FXYD2, IL6, CD3G, SCN3A, GPER, GPR109B, GPR109A, MET, CD1C, TSPAN7, MME, CD70, ITGB3, TNFRSF4, HLA-DQA1, CCR9, LOC100133678, TNFRSF9, SSTR2, CCR7, CXCR5, MS4A1, CD22, ITGAD		
Up-regulated	Extracellular region	18	A2M, UTS2, RNASE2, RNASE3, ENPP3, FST, PRG2, ELANE, CLU, LYZ, COL2A1, DLK1, HGF, PROK2, FREM1, TGFB1, FCN1, MPO		

Supplementary Table 7. Significantly affected cellular compartments after 24 h and 7 d.

Significantly affected cellular compartments for CD34 ⁺ cells after 7 days					
Up-regulated	DAVID category	N° of genes	List of genes		
	Hemoglobin complex	5	AHSP, HBG1, HBA2, HBA1, HBD		

Supplementary Table 8. Significantly affected molecular functions after 24 h and 7 d.

Significantly affected molecular functions for CD34 ⁺ cells after 24 hours						
Down-regulated	DAVID category	N° of genes	List of genes			
	Cytokine activity	21	CCL1, CXCL1, CSF2, IL1F9, CCL3, IL6, CCL2, IL8, CD70, IL32, PF4, CXCL11, CCL4, CXCL10, PPBP, CXCL13, CCL3L1, CCL3L3, LTB, EBI3, IL1A			
	Chemokine activity/ chemokine receptor binding	13	CXCL1, CCL1, CCL3, CCL2, IL8, PF4, CXCL11, CCL4, CXCL10, PPBP, CXCL13, CCL3L1, CCL3L3			
	Cytokine binding	8	CCR9, CCR7, CXCR5, IL10RA, TNFRSF18, IL7R, TNFRSF4, EBI3			
Up-regulated	Ion binding	10	MTIL, MTIM, MTIE, MTIB, MTIJP, MTIH, MTIG, MTIP3, MTIX, MTIF			

Significantly affected molecular functions for CD34 ⁺ cells after 7 days						
Down-regulated	DAVID category	Nº of genes	List of genes			
	Metalloendopeptidase activity	4	MMP9, MME, ADAMDEC1, MMP12			
Up-regulated	Ion binding	9	MTIL, MTIM, MTIE, MTIJP, MTIH, MTIG, MTIP3, MTIX, MTIF			