Electronic Supporting Information

Studies on the synthesis of sugar triazole based ligand for protein and DNA binding

Arasappan Hemamalini^a and Thangamuthu Mohan Das^{b*}

^aDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai – 600 025, INDIA. ^bDepartment of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur -610 004; Ph. No. +919489054264; Fax 04366 – 225312; E-mail: tmohandas@cutn.ac.in

Scheme 1: Synthesis of bis propargylated aldehydes (2a) and (2b).

Scheme 2 Synthesis of sugar-chalcone based bis propargylated derivatives.

Parameters	2a	2b
Formula	$C_{13}H_{10}O_3$	$C_{13}H_{10}O_{3}$
Formula Weight	216.19	216.19
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$
a (Å)	4.5734(4)	4.9212(6)
b (Å)	17.8195(13)	16.858(2)
c (Å)	13.2690(11)	13.4277(17)
α (deg)	90.00	90.00
β (deg)	91.727(4)	98.252(5)
$\gamma(\text{deg})$	90.00	90.0090
$V(A^3)$	1080.88(15)	1102.4(2)
Z, Calculated density (Mg/m ³)	1.329	1.291
μ (mm ⁻¹)	0.099	0.092
T (K)	293(2)	293(2)
No. of unique reflections	3855	2171
No. of observed reflections	3680	10580
<i>R</i> 1, <i>R</i> w	0.0452, 0.135	0.0407, 0.1037
GOF	0.900	1.090
Crystal habit	Block, colorless	Block, colorless

 Table 1 Crystallographic data of compounds, 2a & 2b

Compound	D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)
No.					
	C(9)-H(9) ···O(3)#1	0.95(2)	2.28(2)	3.198(2)	162.5(15)
2a	C(13)-H(13) ···O(3)#2	0.94(3)	2.71(3)	3.525(2)	145(2)
	C(4)-H(4)O(1)#1	0.93	2.48	3.364(2)	158.5
2b	C(8)-H(8A)O(1)#2	0.97	2.63	3.446(2)	141.6
	C(10)-H(10)O(1)#3	0.93	2.26	3.153(2)	159.7

Table 2 Hydrogen bonding interaction of compound, 2a & 2b

Symmetry transformations: For compound **2a** #1 -x+3/2,y-1/2,-z+3/; #2 -x+1,-y+1,-z+1, For compound **2b**: #1 x-1/2,-y+1/2,z+1/2; #2 x+1/2,-y+1/2,z+1/2; #3 -x+5/2,y+1/2,-z+1/2.

Figure 3 Hydrogen bonding interactions and crystal packing structure of the compound, 2a.

Figure 4 Crystal packing of compound, 2b, (a), with four molecules; (b), one dimensional network.

Figure 1¹H NMR spectrum (300 MHz, CDCl₃) of compound, 2a.

Figure 2 ¹³C NMR spectrum (75 MHz, CDCl₃) of compound, 2a.

Figure 3 ¹H NMR spectrum (300 MHz, CDCl₃) of compound, 5.

Figure 5 Mass spectrum of compound, 5.

Figure 6¹H NMR spectrum (300 MHz, CDCl₃) of compound, 3a.

E0.861 -

Figure 8¹H NMR spectrum (300 MHz, CDCl₃) of compound, 6a.

Figure 10 DEPT-135 spectrum (75 MHz, CDCl₃) of compound, 6a.

Figure 12 DEPT-45 spectrum (75 MHz, CDCl₃) of compound, 6a.

Figure 13 ¹H-¹³C [COSY] spectrum (75 MHz, CDCl₃) of compound, 6a.

Figure 14 APT spectrum (75 MHz, CDCl₃) of compound, 6a.

Figure 16 K_{sv} graph for compound, (a) 5, (b) 6a and (c) 6c with protein (BSA)

Stern-Volmer equation $F_0/F=1+K_{sv}[Q]$, where F_0 and F are the steady-state fluorescence intensities in the absence and presence of quencher respectively. [Q] is the concentration of quencher and K_{sv} is the Stern-Volmer quenching constant which in turn was obtained by plotting F_0/F vs [Q]. According to the equation, $KSV=Kq.\tau_0$, where Kq is the quenching rate constant and τ_0 is the fluorescence lifetime of protein in the absence of quencher, the value of τ_0 is considered to be 10^{-8} s.

Cyclic Voltammetric studies

The electrochemical behaviour of the ligand 6c without and with CT-DNA has been studied by cyclic voltammetry (CV) in acetonitrile containing 0.1 TBAP. In cyclic voltammetric study, the changes in the current of compound, **6c** with and without CT-DNA and BSA are depicted in **Figure 17**.

Figure 17 Cyclic voltammogram of compound, **6c** (a) without CT-DNA, (b) with CT-DNA, (c) with BSA; Scan rate: 0.1 Vs⁻¹

It was observed while recording CV for compound, **6c** in the forward scan, a single cathodic peak was observed at a potential of -0.92V with a current of 1×10^{-5} A, which corresponds to the reduction of **6c** whereas in the reverse scan, no anodic peak was observed which indicates that the process is irreversible. When CT-DNA was added to the solution of **6c**, marked decrease in the peak current heights to 6.29×10^{-6} A and shift in the peak potential to a slight positive value of -0.90V were observed. Similarly, addition of BSA to the ligand, **6c** clearly depresses the peak current height to 4.1×10^{-6} A accompanied with the shift in the potential to -0.87V which is of higher extent compared to that of CT-DNA. These results not only provides an information about the interaction of compound, **6c** with both BSA and DNA but also an evident for the change in the electrochemical properties. Since the change with BSA observed is higher compared to that of CT-DNA, it means that the change in the electrochemical property of the compound, **6c** with BSA is higher compared to that of CT-DNA.

Antibacterial studies:

Figure 17. Zone of inhibition of compounds 5, 6a and 6c by agar diffusion method

Compound 6c

Compound 6c

- C Control
- 1 $25 \mu L$
- 2 50µL
- 3 75µL

		Zone of inhibition (diameter in mm)		
S. No	Compounds	25 µL (1%)	50 μL (1%)	75 μL (1%)
1	1	1	3	5
2	2	6	11	13
3	3	1	4	11
4	Control	NI	NI	NI

 Table 1. Inhibition effect of compounds 5, 6a and 6c on growth of Streptococcus pyogenes.

NI: No Inhibition

Table 2. Inhibition	effect of compounds	5. 6a and 6c on	growth of <i>Bacillus subtilis</i>
	enreet of compounds	, c, ou und oc on	Bien in er Buennis suenns

		Zone of inhibition (diameter in mm)		
S. No	Compounds	25 µL (1%)	50 μL (1%)	75 μL (1%)
1	1	3	11	12
2	2	4	12	13
3	3	3	6	13
4	Control	NI	NI	NI

NI: No Inhibition

Table 3. Inhibition effect of compounds 5, 6a and 6c on growth of Pseudomonas aeruginosa

		Zone of inhibition (diameter in mm)			
S. No	Compounds	25 μL (1%)	50 μL (1%)	75 μL (1%)	
1	1	-	4	11	
2	2	1	3	6	
3	3	1	6	11	

4	Control	NI	NI	NI

NI: No Inhibition

Table 4. Inhibition effect of compounds 5,	, 6a and 6c on growth of <i>Klebsiella pneumoniae</i>
--	---

		Zone of inhibition (diameter in mm)			
S. No	Compounds	25 µL (1%)	50 μL (1%)	75 μL (1%)	
1	1	5	6	8	
2	2	1	2	3	
3	3	1	3	5	
4	Control	NI	NI	NI	

NI: No Inhibition