Supporting information for:

A Highly Selective PET-Based Chemosensor for Instant

Detecting Zn²⁺

Jie Guan, Peng Zhang, Tai-bao Wei, Qi Lin, Hong Yao and You-ming Zhang*

E-mail: zhangnwnu@126.com¹

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China

Supporting Information List of Figures:

Figure S1. Plot of the UV-vis absorption at 423 nm for a mixture of L2 (20 μ M) upon adding of an increasing concentration of Zn²⁺ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24).

Figure S2. The Job's plot examined between Zn^{2+} and L2, indicating the 1: 1 stoichiometry, which was carried out by UV-vis spectra.

Figure S3. Fluorescence spectra response of L2 (20 μ M) upon addition of Zn²⁺ (20 equiv.) in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24), (λ_{ex} =423 nm). Inset: Photograph of L2 (20 μ M) upon adding 20 equiv. of Zn²⁺, which was taken under a UV-lamp (365 nm).

Figure S4. Plot of the intensity at 508 nm for a mixture of L2 (20 μ M) upon adding of an increasing concentration of Zn²⁺ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24),

^{*} Corresponding author. Tel.: +86-931-797-3120; fax: +86-931-797-3120; e-mail: zhangnwnu@126.com

 $(\lambda_{ex}=423 \text{ nm}).$

Figure S5. ESI-MS spectra of L2.

Figure S6. ESI-MS spectra of L2-Zn²⁺.

Figure S7. ESI-MS spectra of L2-Zn²⁺ upon addition of Cu²⁺.

Figure S8. FT-IR spectra of L2 (the black line) and L2-Zn²⁺ (the red line).

Figure S9. Fluorescence spectra of L2-Zn²⁺ (20 μ M) in the presence of Cu²⁺ or Cu²⁺

and S²⁻ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24), (\lambda ex=423 nm).

Figure S10. ¹H NMR spectra of L2.

Figure S11. ¹³C NMR spectra of L2.

Figure S1. Plot of the UV-vis absorption at 423 nm for a mixture of L2 (20 μ M) upon adding of an increasing concentration of Zn²⁺ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24).

Figure S2

Figure S2. The Job's plot examined between Zn^{2+} and **L2**, indicating the 1: 1 stoichiometry, which was carried out by UV-vis spectra.

Figure S3. Fluorescence spectra response of L2 (20 μ M) upon addition of Zn²⁺ (20 equiv.) in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24), (λ_{ex} =423 nm). Inset: Photograph of L2 (20 μ M) upon adding 20 equiv. of Zn²⁺, which was taken under a UV-lamp (365 nm).

Figure S4. Plot of the intensity at 508 nm for a mixture of L2 (20 μ M) upon adding of an increasing concentration of Zn²⁺ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24), (λ_{ex} =423 nm).

Figure S5. ESI-MS spectra of L2.

Figure S6. ESI-MS spectra of L2-Zn²⁺.

Figure S7. ESI-MS spectra of $L2-Zn^{2+}$ upon addition of Cu^{2+} .

Figure S8. FT-IR spectra of L2 (the black line) and L2-Zn²⁺ (the red line).

Figure S9. Fluorescence spectra of L2-Zn²⁺ (20 μ M) in the presence of Cu²⁺ or Cu²⁺ and S²⁻ in DMSO/H₂O (8:2, v/v, containing 0.01 M HEPES, pH=7.24), (λ ex=423 nm).

Figure S10. ¹H NMR spectra of L2.

Figure S11. ¹³C NMR spectra of L2.