Is Metal Metathesis a Framework-Templating Strategy to Synthesize Coordination Polymers? Transmetallation Studies involving Flexible ligands

Kumari Suman, ${ }^{\text {a }}$ Fayaz Baig, ${ }^{\text {a }}$ Rajnikant, ${ }^{\text {b }}$ Vivek K. Gupta ${ }^{b}$ Sanjay Mandal ${ }^{\text {c }}$ and Madhushree Sarkar*a
${ }^{\text {a }}$ Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India. Fax: +91-1596-244183; Tel: +91-1596-245073; E-mail: msarkar@pilani.bits-pilani.ac.in
${ }^{\mathrm{b}}$ Post Graduate Department of Physics, University of Jammu, Jammu Tawi, India. Fax/Tel:+91-1912432051 E-mail: rkvk.paper11@gmail.com
${ }^{\text {c }}$ Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali Mohali (Punjab) 140306, INDIA Email: sanjaymandal@iisermohali.ac.in

Supporting Information
(Synthesis details, ORTEP, IR Spectra, Powder XRD, Atomic Absorption Spectra (AAS), Wavelength Dispersive X-Ray Fluorescence (WD-XRF); Thermogravimetric analysis (TGA)

General: Infra-red spectrum was recorded in FTIR ABB Bomen MB-3000. Elemental analyses were obtained with a Thermo finnigan, Italy, Model FLASH EA 1112 series. Powder X-ray diffraction (XRD) data were recorded with a Rigaku miniflex $11, \lambda=1.54, \mathrm{Cu} \mathrm{K} \alpha$. Atomic Absorption Spectra (AAS) was measured using AA-7000, Shimadzu. Wavelength Dispersive X-Ray Fluorescence (WD-XRF) was measured using S8 TIGER, Make: Bruker, Germany; with X-Ray tube of 4 KW with 'Rhodium' target and a high volatage/tube current: $60 \mathrm{kv} / 64 \mathrm{~mA}$. Thermogravimetric analysis (TGA) data were recorded under a N_{2} atmosphere at a heating rate of $2^{\circ} \mathrm{Cmin}^{-1}$ with a Perkin-Elmer instrument. The single crystal data was collected on a Xcalibur, Sapphire3 X-ray diffractometer that uses graphite monochromated Mo K α radiation $(\lambda=0.71073 \AA)$ by the ω-scan method. ${ }^{1}$ The structures were solved by direct methods and refined by least square methods on F^{2} using SHELX-97. ${ }^{2}$ Non-hydrogen atoms were refined anisotropically and hydrogen atoms were fixed at calculated positions and refined using a riding model.
Synthesis of ligand 1b: 3-Amino pyridine (2 mmol) was added to 40 mL of a pyridine solution of adipic acid (1 mmol), and the solution was stirred for 15 min . To this solution was added triphenyl phosphite (2 mmol), and the mixture was refluxed for 5 h . The volume of the solution was reduced to 5 mL by distilling out the pyridine, and a white precipitate was obtained. The solid was filtered, washed with water, and dried under vacuum. Yield: 70%. Mp: $216-220^{\circ} \mathrm{C}$. FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3301(w), 3247(m), 3178(m), 3108(m), 3039(m), 2947(vs), 2917(s), 2875(m), 1690(vs), 1580(vs), 1550(s), 1478(m), 1419(vs), 1378(m), 1281(vs), 1157(s), 1132(w), 1034(m), 943(m), 910(w), 856(w), 810(s), 735(w), 701(m), 625(w), 578(w).

Synthesis of CP-3-Cu, $\left\{\left(\mathbf{C u}(\mathbf{1 b})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right) \cdot 2\left(\mathrm{ClO}_{4}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{\mathrm{n}}$:The ligand $\mathbf{1 b}(596 \mathrm{mg}, 2.0 \mathrm{mmol})$ dissolved in 15 ml of $1: 1$ mixture of water-Ethanol solvent system. To the above solution, 10 ml ethanolic solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(370.1 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added. The resulted blue precipitate was dissolved by adding few drops of water. The solution was filtered and kept for slow evaporation. Blue-colored crystals were formed after 8-10 days in 80% yield. Anal. Calcd (\%)for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{CuCl}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}: \mathrm{C}, 41.27 ; \mathrm{H}, 4.72 ; \mathrm{N}$ 12.03 Found: C, 41.27; H, 4.55; N, 11.63; FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3564(s), 3278(s), 3201 (w), 3101(w), 2931(w), 2862(w), 1674(s), 1612(w), 1589(w), 1550(vs), 1488(m), 1427(s), 1365(w), 1296 (m), 1242(w), 1195(w), 1103(vs), 956(w), 918(w), 810(m), 702(m), 624(m), 555(w).

Synthesis of CP-4-Cd, $\left\{\left(\mathrm{Cd}(\mathbf{1 b})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right) \cdot 2\left(\mathrm{ClO}_{4}\right) \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{\mathrm{n}}$: Microwave assisted technique was used wherein ligand $\mathbf{1 b}(59.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(41.94 \mathrm{mg}, 0.1 \mathrm{mmol})$ was taken 5 ml of $1: 1$
mixture of water-Ethanol into a specially designed microwave test tube. The reaction mixture was irradiated for 10 minutes at $90^{\circ} \mathrm{C}$, at medium stirring rate and 100 psi pressure. White crystals suitable for single crystal XRD were formed after keeping the solution for a day. Anal. Calcd (\%)for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{CdCl}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}$: C, 39.22; H, 4.53; N, 11.43 Found: C, 41.69 ; H, 4.57; N, 10.69
FTIR (KBr, cm^{-1}): 3865(s), 3841(s), 3741(vs), 3672(m), 3649(m), 3618(m), 3564(w), 3317(vs), 1674(vs), 1527(vs), 1481(s), 1419(s), 1326(w), 1288(m), 1164(w), 1103(vs), 956(w), 802(w), 771(s), 702(w), 624(m), 563(m).

Table S1: Elemental Analysis (Calculated)

Found

Synthesis of CP-4-Cu: Metal-metathesis reaction was performed on CP-4-Cd wherein crystals of CP-4-
Cd were immersed into 0.1 M ethanolic solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The white crystals slowly turned blue crystals. The crystals were analyzed by IR, Powder XRD, AAS and WD-XRF spectroscopy.

Figure S1. IR spectra of Ligand 1b:

Figure S2. IR Spectra of CP-3-Cu

Figure S3. IR Spectra of CP-4-Cd

Figure S4. Powder XRD of CP-3-Cu (Calculated)

Figure S5: Powder XRD of CP-3-Cu (Experimental)

Figure S6. Powder XRD of CP-4-Cd (Calculated)

Figure S7: Powder XRD of CP-4-Cd (Experimental)

Figure S8: Powder XRD of CP-4-Cu (Experimental)

Figure S9: Powder XRD of CP-3-Cu and CP-4-Cu;

Figure S 10: Thermal Analysis of CP-3-Cu

Initial Weight loss of 7.82 \% corresponds to the loss of four water molecules (Calculated 7.804\%). The coordination polymer degrades beyond $250^{\circ} \mathrm{C}$.

Figure S 11: Thermal Analysis of CP-4-Cd

Initial Weight loss of 3.32% corresponds to the loss of two water molecules (Calculated 3.70\%). The weight loss of 3.56% corresponds to the further loss of two water molecules (Calculated 3.84\%)..

Figure S 12: WD-XRF of the Transmetallation Reaction at various intervals (Intensity $\boldsymbol{v s}$ 2日)

Figure S 13 WD-XRF (Intensity $v s$ Binding Energy) of the Transmetallation Reaction at various intervals [CP-4-Cd $+\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \rightarrow \mathbf{C P}-4-\mathrm{Cu}$]
(a) At the start of the reaction (time $=0$)

(b) After one hour of reaction

(c) After three hour of reaction

(e) After seven hour

(f) After nine hour

(g) After ten hour

Figure S 14: ORTEP of CP-3-Cu

Figure S 15: ORTEP of CP-4-Cd

References:

1. CrysAlis PRO (oxford Diffraction, 2010, Oxford Dffraction Ltd.,Yarton, Oxfordshire, England 2. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112.
2. (a) M. Sarkar and K. Biradha, Cryst. Growth Des., 2006, 6, 202; (b) L. Rajput, S, Singha and K. Biradha, Cryst. Growth Des., 2007, 7, 2788.
