
ELECTRONIC SUPPLEMENTARY INFORMATION

1. NUMERICAL METHOD

In this section, further details of the numerical are provided, in particular those concerning 
discretization and numerical implementation.

1.1 FLUID SOLVER

A second-order projection method is employed1 in which an intermediate velocity u* is 
computed,
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and the boundary conditions are given by

𝑢 ∗ |𝛿Ω = 𝑢𝑛 + 1
𝑏 .

The viscous term has been split using a Crank-Nicolson scheme, resulting in a Helmholtz 
equation, and is solved by an alternate directions implicit (ADI) method. The advection term is 
computed using an Adams-Bashforth method:

(𝑢 ∙ ∇𝑢)𝑛 + 1/2 =
3
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1
2

(𝑢 ∙ ∇ℎ𝑢)𝑛 ‒ 1.

The intermediate velocity field u* does not satisfy the divergence free condition. A 
pseudo-pressure Φ is computed which is used to update the pressure and velocity so that it does 
satisfy divergence-free conditions:

∇2
ℎ𝜙𝑛 + 1 =

∇2𝑢 ∗

∆𝑡
, 𝑛 ∙ ∇𝜙𝑛 + 1|𝛿Ω = 0.

The equation for the pseudo-pressure Φ is a Poisson equation with Neumann boundary 
conditions. 

The velocity and pressure are then updated using:

𝑢𝑛 + 1 = 𝑢 ∗ ‒ ∆𝑡∇2𝜙𝑛 + 1,

𝑝𝑛 + 1 = 𝑝𝑛 ‒ 1/2 ‒
𝜐
2

(∇2𝑢 ∗ ) + 𝜙𝑛 + 1.

1.2 MEMBRANE DEFORMATION

This model is implemented numerically by first solving for the surface deformation gradient 
tensor A using only the current deformed shape of the membrane and the undeformed shape:

𝐴 ∙
∂�̅�
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 and are local parametric coordinates defined over each triangle of the membrane grid. 𝜂 𝜉
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The components of A are averaged for each element sharing the node to obtain a smoother 
distribution using weighted averages corresponding to the angle of each element attached to the 
node. Finally, the forces on each element can be computed by use of a line integral

∆̅𝑓 =
1
𝑆𝑛

∮
𝐶

[𝑏 ∙ 𝜏]𝑑�̅� ,

where Sn is the area enclosed by the contour C and  is the cross-product of the unit 𝑏 = 𝑡 ×  𝑛
tangential vector along the contour and the surface unit normal vector.

1.3 BOUNDARY CONDITIONS

The inlet and outlet velocities are the analytical solution for a flow in a square duct. For a 
rectangular channel of width W and of height H, with corresponding Cartesian coordinates y   and 
z   centered at the channel center, flowing in direction of increasing x, the velocity is given by 
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This infinite series is truncated at n = 50 in the current implementation. This provides 7 
significant digits of accuracy. Care was taken that cells never approach the inlets or outlets in our 
simulations.

2. VALIDATION

The numerical technique has been validated against previous results by simulating a spherical 
capsule in an infinite shear flow and comparing the deformation at steady-state against results 
from small deformation theory 2, boundary integral methods 3,4 and Immersed Boundary 
methods 5. A capsule of radius R is deformed in pure shear flow placed in a domain of size 15R  x 
15R x 15R   with a grid resolution of  135 x 135 x 135. The sphere consists of 5,120 triangular 
elements and 2,562 vertices. The system is then evolved until the capsule deformation reaches a 
steady state. When the capillary number (Ca) is small, results from the simulations can be 
compared to solutions from linear theory. For any capsule, the deformation at steady state is 

then given by , where the Poisson ratio   is 0.5 for for a Neo-Hookean cell.  is 
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the Taylor deformation ratio, given by , where L and B are the major and minor axes 
𝐷12 =

𝐿 ‒ 𝐵
𝐿 + 𝐵

respectively. At larger capillary numbers, results from small deformation theory are no longer 
accurate. The results from the present study (table 1) are similar to those obtained by others, and 
match most closely those obtained using the immersed boundary method.



Ca Present DB RP L1 SD

0.0125 0.084 0.083 0.078

0.025 0.162 0.162 0.16 0.15 0.156

0.05 0.275 0.278 0.27 0.27 0.313

0.1 0.391 0.392 0.39 0.40

0.15 0.458 0.460 0.47

0.2 0.492 0.496 0.5 0.52

Table 1: Comparison of results from present work, Doddi and Bagchi (2008) (DB), Lac. et al. 
(2004) (L1), Ramanujan and Pozrikidis (1998) (RP) and small deformation theory (SD). Results 
presented are taken from Doddi and Bagchi (2008).

3. COMPARISON WITH EXPERIMENTAL RESULTS

To demonstrate the capabilities of our numerical approach, a comparison with experiments 
performed using a microfluidic cross-slot device that used viscoelasticity to focus the cells is 
presented in figure 1. We employed an upper-convective Maxwell method to treat the 

viscoelastic terms of the Navier—Stokes equations,

,
𝜏 + 𝜆

∂
∂𝑡
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where τ is the stress tensor, λ the relaxation time, v the fluid viscosity, D the tensor of the 
deformation rate and η0 the viscosity at steady shear. The simulations show good agreement 
with the experimental results, especially at lower flow rates. At higher flow rates, nonlinear 
effects on the cell are more important and the agreement is somewhat inferior. The 

Elongation Index is defines as , where  is the length of the major axis and  is the 
𝐸𝐼 =  

𝐿 ‒  �̅�
�̅� 𝐿 �̅�

length of the mean undeformed major axis.

FIGURE 1 Comparison of experimental results[7] and simulations. 
There is good agreement, especially at P = 10 μL/hr and P = 40 
μL/hr.
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