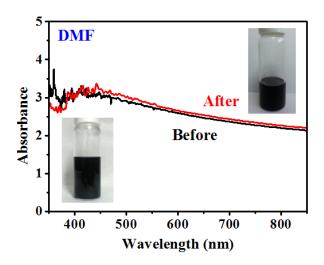
Fabrication of conductive, transparent and superhydrophobic thin films consisting of multi-walled carbon nanotubes

Eun Ji Park^{1,}, Kwang-Dae Kim^{1,}, Hye Soo Yoon¹, Myung-Geun Jeong¹, Dae Han Kim¹, Dong Chan Lim², Yong Ho Kim^{1,3,*} and Young Dok Kim^{1,4,*}


¹ Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea

² Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon 641-010, Republic of Korea

³ SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea

⁴ Biorefinery Research Group, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea

Supporting Information

Supporting Information 1. Absorbance spectra of P-MWCNT/DMF solutions before and after 9 month. Inset images show a view of each MWCNT/DFM solution in vial.

We centrifuged the MWCNTs dispersed solutions and the supernatants containing welldispersed MWCNTs were collected. Therefore, absorbance of the solution in the UV/Vis range can be directly related to dispersity of MWCNTs in organic solvents. The stability of the dispersed MWCNTs in DMF solution was demonstrated by comparing the absorbance of as-prepared solution and solution after 9 month. No significant change in between absorbance spectra before and after 9 month was observed (Supporting Information 1). This result correlates with stability of the P-MWCNTs in the DMF solution. It was worth mentioning the MWCNTs in DMF solution maintained its dispersity even after 9 month.