

Electronic supplementary information

Role of cation-anion in selective synthesis of glycidol from glycerol using DABCO-DMC ionic liquid as catalyst

Mudassir K Munshi, Swapna M Gade, Vilas H Rane and Ashutosh A Kelkar¹

Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune. 411008 India

Content

Instrument	Page
Instrument details	Page 2
¹³ C NMR Spectra	Page 2
¹ H- ¹³ C HSQC NMR Spectra	Page 3
¹ H- ¹³ C HMBC NMR Spectra	Page 3
TGA of ionic liquid	Page 3

1 : Corresponding Author: Fax +91 20 25902621; Tel : +91 20 25902544 ; E-mail: aa.kelkar@ncl.res.in

Instruments:

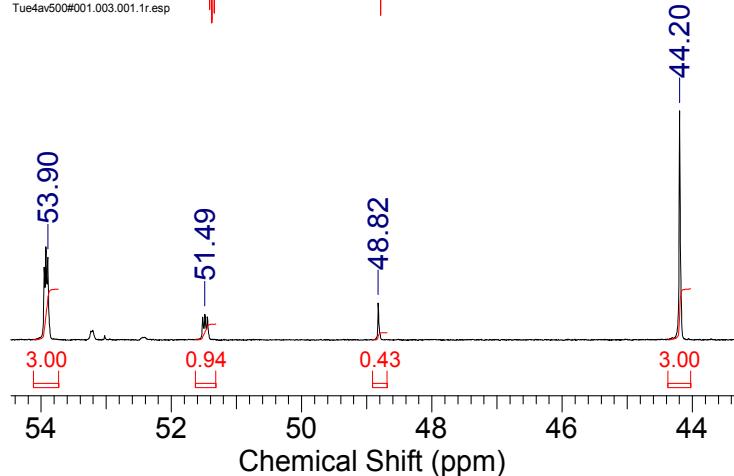
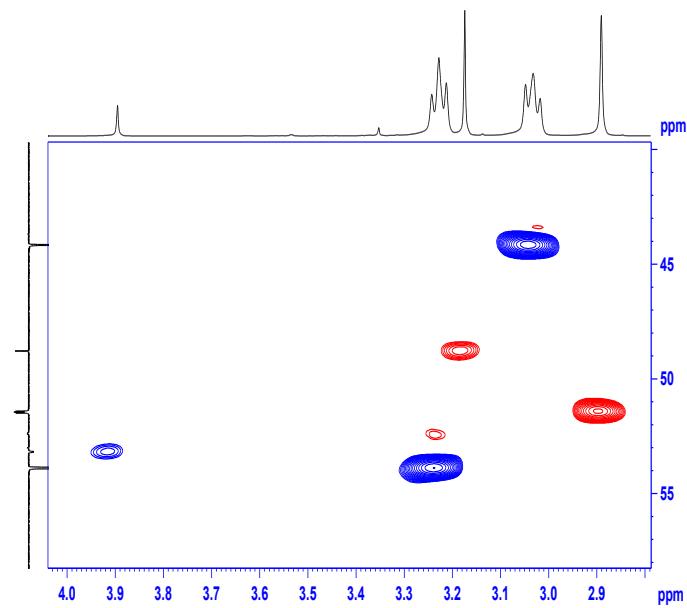
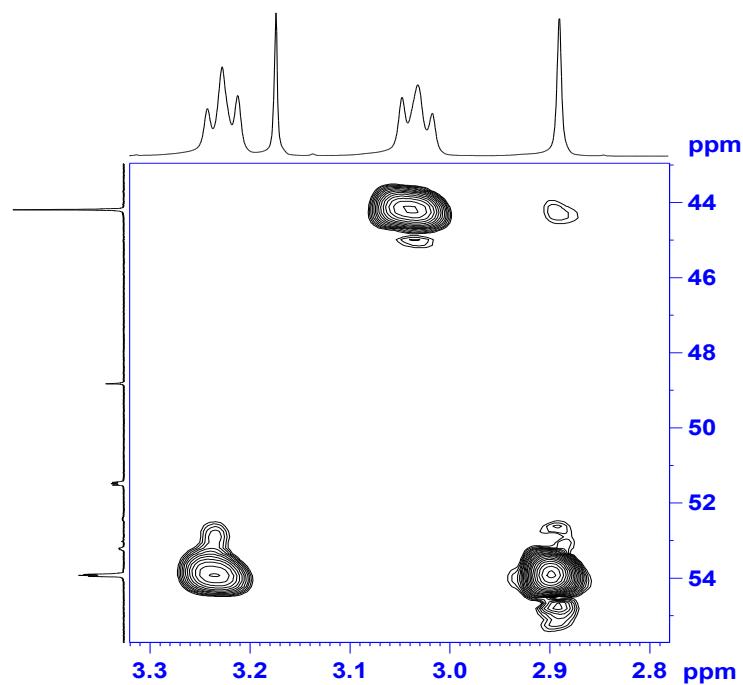

NMR Spectra were recorded on a Bruker Avance 500 and 400 wide bore spectrometer equipped with a superconducting magnet with a field of 9.4 T by using 5 mm tubes in D₂O as a solvent. ¹⁵N NMR chemical shifts in parts per million (ppm) were reported with reference to liquid NH₃. Thermal analysis (TG-DTA) of the ionic liquid was conducted using a Pyris Diamond TGA analyzer with a heating rate of 10 °C min⁻¹ under nitrogen atmosphere. And melting point was measured on melting point apparatus.

Figure 1: ¹³C NMR spectra of ionic liquid

A: ¹³C NMR DEPT



B: ¹³C NMR



Note: The text "Tue3av400#002.001.001.1r.esp" is the file name that inherently comes with the ACD software used for NMR data interpretation.

Figure 2: ^1H - ^{13}C HSQC NMR spectra of ionic liquid

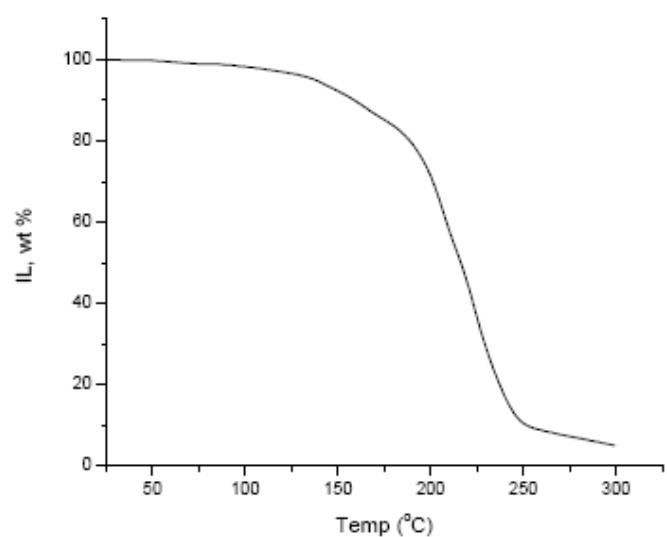


Figure 3: ^1H - ^{13}C HMBC NMR spectra of ionic liquid

Key correlations observed in ^1H - ^{13}C HSQC (Figure 2) are: δC 44.20/ δH 3.09, δC 48.82/ δH 3.16, δC 51.49 / δH 2.95, δC 53.90 / δH 3.29 and those observed in ^1H - ^{13}C HMBC (Figure 3) are: δC 53.90 / δH 3.29 (observed in ^1H - ^{13}C HSQC) along with a new long range correlation of δC 53.90 / δH 2.95. The observed correlations establish the presence of $\text{N}-\text{CH}_3$ unit in the ionic liquid synthesized.

Figure 4: TGA analysis of the ionic liquid

