Supporting Information

Al³⁺ selective coumarin based reversible chemosensor: application in living cell imaging and as integrated molecular logic gate

Deblina Sarkar,^a Arindam Pramanik,^b Sujan Biswas,^a Parimal Karmakar^b and Tapan Kumar Mondal^a*

a Department of Chemistry, Jadavpur University, Kolkata-700032, India E-mail: <u>tkmondal@chemistry.jdvu.ac.in</u>

b Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700 032,

E-mail: pkarmakar_28@yahoo.co.in (P. Karmakar).

Contents

Fig. S1. ¹H-NMR spectra of H_2L (A) and H_2L -Al³⁺ (B) in CDCl₃

Fig. S2. HRMS spectra of the receptor H_2L

Fig. S3. HRMS spectra of the receptor H_2L -Al³⁺ complex

Fig. S4. UV-Vis spectra of chemosensor (HL) (10 μ M) upon addition of 2 equivalent of various metal ions (100 μ M)

Fig. S5. The visible change in colour of H_2L in presence of Al^{3+} compared to other metals

Fig. S6. Job's plot diagram of the receptor (H_2L) for Al^{3+}

Fig. S7. Determination of Limit Of Detection of the receptor (H₂L) for Al³⁺

Fig. S8. Determination of binding constant of the receptor (H_2L) for Al^{3+}

Fig. S9. Change in emission intensity of chemosensor (H_2L) upon addition of Al^{3+} along with other metal ions

Fig. S10. Potential energy scan in singlet ground (S_0) state of H₂L by DFT/B3LYP/6-311G(d) method

Fig. S11. Contour plots of selected molecular orbitals of chemosensor (H₂L)

Fig. S12. Contour plots of selected molecular orbitals of H₂L-Al³⁺

Fig. S1. ¹H-NMR spectra of H_2L (A) and H_2L -Al³⁺ (B) in CDCl₃

Fig. S2. HRMS spectra of the receptor H_2L

Fig. S3. HRMS spectra of the receptor H_2L - Al^{3+} complex

Fig. S4. UV-Vis spectra of chemosensor (HL) (10 μ M) upon addition of 2 equivalent of various metal ions i,e, Na⁺, K⁺, Ca²⁺, Mg²⁺, Mn²⁺, Fe³⁺, Cr³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺ and Hg² (100 μ M)

Fig. S5. Visual effect of addition of Al^{3+} to H_2L in comparison to other metals.

Fig. S6. Job's plot diagram of the receptor (H₂L) for Al³⁺ (where Δ F indicates the change of emission intensity at 398 nm)

Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of H_2L without any analyte was measured by 10 times and the standard deviation of blank measurements was found to be $1.370320319 \times 10^{-4}$.

The limit of detection (LOD) of H₂L for Al³⁺ was determined from the following equation: LOD = $K \times \sigma$ Where K = 3 in this case and $\sigma = (Sb_1)/(S)$; Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 104.52, and Sb₁ value is $1.370320319 \times 10^{-4}$ (**Fig. S8**). Thus using the formula we get the LOD = 0.393μ M.

Fig. S7. Linear response curve of H_2L at 398 nm depending on the Al^{3+} concentration.

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according equation. The binding constant β was calculated following the equation stated below.

 $Log (F-F_{min})/(F_{max}-F) = nlog [M^{n+}] + B$

Here F_{min} , F and F_{max} indicate the emission intensity in absence of, at intermediate and at infinite concentration of metal ion respectively. B = log β , where β is the total binding constant and n is the number of Al³⁺ bind per ligand. From the plot n = 1.17 indicating 1:1 stoichiometry for the formed HL-Al³⁺ complex (**Fig. S8**). From the intercept β is found to be 1.48×10⁶.

Fig. S8. Determination of binding constant of H_2L for Al^{3+} from fluorescent titration data

Fig. S9. Change in emission intensity of chemosensor (H_2L) upon addition of 1 equivalent of Al^{3+} along with 2 equivalents of other metal ions to the receptor H_2L

Fig. S10. Potential energy scan in singlet ground (S₀) state of H_2L by DFT/B3LYP/6-311G(d) method

Fig. S11. Contour plots of selected molecular orbitals of chemosensor (H₂L)

Fig. S12. Contour plots of selected molecular orbitals of H₂L-Al³⁺