A simple label-free rhodamine 6G SERS probe for quantitative analysis of trace As(III) in the aptamer-nanosol

Lingling Ye[§], Guiqing Wen[§], Jichao Dong, Yanghe Luo, Qingye Liu, Aihui Liang^{*}, Zhiliang Jiang^{*}

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of

Education Ministry, Guangxi Key Laboratory of Environmental Pollution Control Theory and

Technology, Guangxi Normal University, Guilin 541004, China.

Preparation of gold nanoparticles

Nanogold was synthesized through reduction of HAuCl₄ by trisodium citrate. Into a 50 mL boiling water with stirring, a 0.5 mL 1% HAuCl₄ and 3.5mL 1% trisodium citrate were added rapidly successively. After boiling for 10 min, the color became from colorless to wine red. The mixture was continued stirring to room temperature, and then diluted to 50 mL to obtain a concentration of 58.0 μ g/mL Au nanogold in size of about 10 nm [25].

Preparation of silver nanoparticles

Silver nanoparticle was synthesized through NaBH₄ reduction process [37]. A 40 mL water was added into a flask, a 3.5mL10g/L trisodium citrate and 385 μ L 2.4×10⁻² mol/L AgNO₃ were added into successively. Then, 4.0mL 0.5mg/mL NaBH₄ was dripped slowly. After 20 min, it was diluted to 50 mL to obtain a 19.9µg/mL Ag nanosilver sol that stored at 4 °C.

Preparation of NGssDNA probe

Piped 10 mL 58.0 μ g/mL NGs into a conical flask, added 2.0 mL 2.0mL 0.5 μ mol/L ssDNA solution under the stirring slowly, continued to stir 15 min, and stored at 4 °C. In terms of ssDNA, the NGssDNA concentration is 83.3 nmol/L.

Preparation of NSssDNA probe

A 3.0mL 19.9μ g/mL NSs was moved into a conical flask, and a 1.0mL 0.5 μ mol/L ssDNA solution was added slowly to obtain the probe. In terms of ssDNA, this NSssDNA concentration is 125 nmol/L.

a: 25nmol/L NSssDNA+pH 8.0 HEPES+50mmol/L NaCl+5.23×10⁻⁶mol/L Rh6G; b: a+0.144 ng/mL As³⁺; c: a+5.76ng/mL As³⁺; d: a+8.64ng/mL As³⁺; e: a+11.52ng/mL As³⁺; f: a+17.28ng/mL As³⁺.

a: 25nmol/L NGssDNA +pH 8.0 HEPES+50mmol/L NaCl+5.23×10⁻⁶mol/L Rh6G; b: a+2.88ng/mL As³⁺; c: a+5.76ng/mL As³⁺; d: a+11.52ng/mLAs³⁺; e: a+17.28ng/mL As³⁺.

 Fig. 3S UV spectrum of NGssDNA-As³⁺-Rh6G system

 a:
 25nmol/L NGssDNA +15min+ pH 8.0 0.75mmol/L HEPES+50mmol/L NaCl+5.23×10⁻⁶mol/L Rh6G; b: a+2.88ng/mL As³⁺; c: a+5.76ng/mL As³⁺; d: a+11.52ng/mL As³⁺; e: a+17.28ng/mL As³⁺

Fig. 5S Effect of ssDNA concentration

14.3µg/mL NGs+50mmol/L NaCl+pH 8.0 HEPES +5.23×10⁻⁶mol/L Rh6G

Fig. 6S Effect of pH

25nmol/L NGssDNA+50mmol/L NaCl+ 0.75mmol/L HEPES +10 ng/mL As³⁺+5.23×10⁻⁶mol/L Rh6G

Fig. 7S Effect of NGssDNA concentration 50mmol/L NaCl+pH 8.0 HEPES+10 ng/mL As³⁺ +5.23×10⁻⁶mol/L Rh6G

Fig. 9S Working curve of different ssDNA system 25nmol/l NGssDNA +50mmol/L NaCl+pH 8.0 HEPES +5.23µmol/L Rh6G

Fig. 10S Working curve of different SERS substrate system 25nmol/L Au/AgssDNA +50mmol/L NaCl+pH 8.0 HEPES +5.23µmol/L Rh6G.

Fig. 11S Working curve of different valence state arsenic system 25nmol/l NGssDNA +50mmol/LNaCl+pH 8.0 HEPES +5.23µmol/L Rh6G.

Table 1S Effect of foreign substances

Coexistent	Tolerance	Relative error	Coexistent	Tolerance	Relative error
substance	Concentration	(%)	substance	Concentration	(%)
L-valine	2.5µg/mL	-5.7	Zn^{2+}	100µmol/L	3.6
L-aspartate	2.5µg/mL	3.7	\mathbf{K}^+	50µmol/L	3.7
L-lysine	2.5µg/mL	1.9	Co ²⁺	10µmol/L	-8.5
glucose	15µmol/L	3.6	Hg^{2+}	10µmol/L	-1.6
BSA	120ng/mL	-4.1	Cu^{2+}	75µmol/L	-5.6
HSA	150ng/mL	1.8	A1 ³⁺	7.5µmol/L	1.8
Ca ²⁺	150µmol/L	-3.5	Ba ²⁺	100µmol/L	4.2
Mg^{2+}	150µmol/L	3.6	Fe ³⁺	2.5µmol/L	-1.9

Table 2S Different ssDNA system analysis feature

system kegression equation (ng/mL) coefficient (ng/mL) ssDNA1 $\Delta I = 2.3C + 5.1$ 1.44-23.04 0.9760 0.03 ssDNA2 $\Delta I = 0.9C + 2.2$ 1.44-34.56 0.9589 0.07 ssDNA3 $\Delta I = 3.2C + 7.0$ 0.288-23.04 0.9676 0.1	System	B agrossion equation	Linear range	Correlation	Detection limit
ssDNA1 $\Delta I = 2.3C + 5.1$ 1.44-23.040.97600.03ssDNA2 $\Delta I = 0.9C + 2.2$ 1.44-34.560.95890.07ssDNA3 $\Delta I = 3.2C + 7.0$ 0.288-23.040.96760.1		Regression equation	(ng/mL)	coefficient	(ng/mL)
ssDNA2 $\Delta I = 0.9C + 2.2$ 1.44-34.560.95890.07ssDNA3 $\Delta I = 3.2C + 7.0$ 0.288-23.040.96760.1	ssDNA1	$\Delta I = 2.3\mathrm{C} + 5.1$	1.44-23.04	0.9760	0.03
ssDNA3 $\Delta I = 3.2C + 7.0$ 0.288-23.04 0.9676 0.1	ssDNA2	$\Delta I = 0.9\mathrm{C} + 2.2$	1.44-34.56	0.9589	0.07
	ssDNA3	$\Delta I = 3.2\mathrm{C} + 7.0$	0.288-23.04	0.9676	0.1

Table 3S Sample analysis results

		1			
Sample	Spiked As	Average	RSD	Recovery	HG-AAS
	(ng/mL or ng/g)	(ng/mL or ng/g,	(%)	(%)	(ng/mL or ng/g)
		n=5)			
Li river	-	No detected	-	-	-
	12.5	11.9±0.64	5.4	95.2	
	16.7	16.1±0.68	4.2	96.3	
Rong lake	-	No detected	-	-	-
	2.50	2.40±0.16	6.8	96.2	
	5.00	4.89±0.29	5.9	97.9	
Waste water 1	-	7.90±0.51	6.4	-	7.42
Waste water 2	-	11.5±0.59	5.1	-	10.9
Milk 1	-	31.2±1.7	5.4	-	29.8
Milk 2	-	28.0±1.2	4.3	-	27.6