Supporting Information

Synthesis and properties of a new second-order NLO chromophore

containing the benzo[b]furan moiety for electro-optical materials

Maolin Zhang,^{ab} Guowei Deng,^{ab} Airui Zhang,^{ab} Huajun Xu,^{ab} Heyan Huang,^{ab} Chengcheng Peng,^{ab} Shuhui Bo,^a Xinhou Liu,^a Zhen Zhen^a and Ling Qiu*^a

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100049, China. E-mail: <u>qiuling@mail.ipc.ac.cn</u>; Fax: +86 10 62554670. Tel: +86 10-8254 3529

^b Graduated University of Chinese Academy of Sciences, Beijing, 100049, China.

Contents

 Figure S1. The frontier HOMO and LUMO orbitals of the chromophores A (left) and B (right) at the B3LYP/6-311G* level. Table S1. TD-DFT Calculated properties of chromophores A and B.

- 2. Figure S2. TGA curves of chromophores A and B.
- 3. Figures S3-S16. NMR spectra of resulted compounds.

 Figure S1. The frontier HOMO and LUMO orbitals of the A (left) and B (right) at the B3LYP/6-311G* level.

Table S1. TD-DFT Calculated properties of chromophores A and B.

	Excited state	Singlet-A	Excitation	Maximum	Oscillator
			energies/eV	absorption/nm	strengths
	Excited state 1		1.7959	690.39	0.3113
	127-128	0.66784			
	Excited state 2		2.7624	448.83	0.1513
Chromophore	125-128	0.19078			
А	126-128	0.65087			
	Excited state 3		3.2732	378.79	0.5964
	125-128	0.61038			
	126-128	-0.13912			
	127-129	0.13366			
	Excited state 1		2.3264	532.94	1.7208
	156-157	0.60283			
	Excited state 2		2.9845	415.43	0.1092
Chromophore	153-157	-0.10531			
В	155-157	0.63220			
	156-158	-0.19457			
	Excited state 3		3.3425	370.93	0.0056
	153-157	-0.14157			
	154-157	0.67331			

2. Figure S2. TGA curves of chromophores A and B.

3. Figures S3-S16. NMR spectra of resulted compounds.

Figure S4. ¹³ C NMR spectrum of compound 2

Figure S5. ¹H NMR spectrum of compound 3

Figure S6. ¹³C NMR spectrum of compound 3

Figure S7. ¹H NMR spectrum of compound 4

Figure S10. ¹³C NMR spectrum of compound A

Figure S12. ¹³C NMR spectrum of compound 5

Figure S14. ¹³C NMR spectrum of compound 6

Figure S16. ¹³C NMR spectrum of compound B

