SUPPORTING INFORMATION

Multifarious zinc coordination polymers based on biphenyl-3,3',5,5'-

tetracarboxylate and different flexibility of N-donor ligands

Qipeng Li^{*a,b**} and Jinjie Qian^{*a,b*}

^aState Key Laboratory of Structure Chemistry, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

*To whom correspondence should be addressed: E-mail: qpli@fjirsm.ac.cn; Fax: (+86) 591-83709847.

Table of Content

Section S1. Crystallographic Data Tables	S1
Section S2. Powder X-ray Diffraction	S2
Section S3. Thermogravimetric Analysis	S3-S4
Section S4. Additional Structural Figures	S5
Section S5. IR Spectrum	S6-S7
Section S6. Crystallographic Data Tables	S8-S10
Section S7. Fluorescent Emission and Excitation Data	S11

1. Crystallographic Data Tables

Items	1	2	3	4
formula	$C_{13}H_{11}NO_6Zn$	$C_{28}H_{22}N_2O_{10}Zn$	$\mathrm{C}_{25}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{6}\mathrm{Zn}$	$C_{36}H_{36}N_8O_9Zn_2$
weight	342.60	611.85	514.85	855.47
crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
space group	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	7.277(3)	11.470 (2)	10.1877 (9)	20.848 (2)
<i>b</i> (Å)	9.581 (4)	11.555 (2)	12.789 (1)	9.5471 (9)
<i>c</i> (Å)	18.528 (8)	12.047 (2)	17.693 (2)	19.181 (2)
α (°)	90.00	67.634 (8)	90.00	90.00
$\beta(^{\circ})$	95.204 (8)	70.48 (1)	99.720 (4)	99.637 (5)
γ(°)	90.00	65.664 (9)	90.00	90.00
$V(Å^3)$	1288 (1)	1314.9 (4)	2271.6 (4)	3816.8 (6)
Ζ	4	2	4	4
<i>T</i> /K	298 (2)	298 (2)	298 (2)	298 (2)
D_C (g cm ⁻³)	1.769	1.545	1.505	1.489
$\mu(\text{mm}^{-1})$	1.944	1.00	1.126	1.32
<i>F</i> (000)	696	628	1068	1760
θ range (°)	2.21-27.49	2.02–27.5	2.03-27.43	2.35-27.40
parameters	185	370	313	488
Gof on F^2	1.045	0.982	1.039	1.900
R_1^{a}	0.0544	0.0437	0.0464	0.099
wR ₂ ^b	0.1560	0.1112	0.1489	0.2865

Table S1. Crystallographic Data for 1-4.

 $R_1 = \Sigma ||F0| - |Fc|| / \Sigma ||F0|$. $wR2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (F0)^2]^{1/2}$.

2. Powder X-ray Diffraction

Figure S1: Experimental PXRD patterns for complex **1-4**, and their pattern simulated from single crystal X-ray structural data.

3. Thermogravimetric Analysis

Figure S2. TGA data for the as-synthesized 1.

Figure S3. TGA data for the as-synthesized 2.

Figure S4. TGA data for the as-synthesized 3.

Figure S5. TGA data for the as-synthesized 4.

4. Additional Structural Figures

Figure S6. Dihedral angle of a 4^4 -sql sheet in complex 2 viewed along *c* axis.

Figure S7. Dihedral angles are calculated for the bptc⁴⁻ ligands in the complex 1-4.

Figure S8. IR spectroscopy for complex 1.

Figure S9. IR spectroscopy for complex 2.

Figure S10. IR spectroscopy for complex 3.

Figure S11. IR spectroscopy for complex 4.

6. Crystallographic Data Tables

Zn1—01	1.905(3)	Zn1—O5	2.040(3)
Zn1—O3 ⁱ	1.947(3)	Zn1—N1	2.043(3)
01—Zn1—O3 ⁱ	119.26(13)	O3 ⁱ —Zn1—N1	101.24(12)
01—Zn1—05	107.22(14)	05—Zn1—N1	94.77(13)
03 ⁱ —Zn1—O5	105.06(13)	C7—O1—Zn1	121.9(3)
O1—Zn1—N1	125.22(13)		

 Table S2. Bond lengths [Å] and angles [°] for complex 1.

Symmetry transformations used to generate equivalent atoms:

(i) x, -l+y, z.

 Table S3. Bond lengths [Å] and angles [°] for complex 2.

Zn1—O1	1.976(3)	Zn1—O5 ⁱ	2.146(3)
Zn1—N1	2.059(3)	Zn1—O6 ⁱ	2.248(4)
Zn1—N2	2.063(3)	O1—Zn1—N1	128.88(13)
N2—Zn1—O5 ⁱ	92.38(13)	O1—Zn1—N2	101.44(13)
01—Zn1—O6 ⁱ	93.29(12)	N1—Zn1—N2	98.43(13)
N1—Zn1—O6 ⁱ	91.52(13)	01—Zn1—O5 ⁱ	116.64(14)
N2—Zn1—O6 ⁱ	150.74(13)	N1—Zn1—O5 ⁱ	108.97(15)
05 ⁱ —Zn1—O6 ⁱ	58.36(12)		

Symmetry transformations used to generate equivalent atoms:

(i)	Х,	у,	l+z.
-----	----	----	------

Table S4. Bond lengths [A	A] and angles [°]	for complex 3 .
---------------------------	-------------------	------------------------

Zn1—01	2.0568(18)	Zn1—N4 ⁱⁱ	2.140(2)
Zn1—O2 ⁱ	2.0860(19)	Zn1—O3 ⁱⁱⁱ	2.2451(19)
Zn1—N1	2.126(2)	Zn1—O4 ⁱⁱⁱ	2.2471(19)
O1—Zn1—O2 ⁱ	119.41(8)	N1—Zn1—O3 ⁱⁱⁱ	95.71(9)
01—Zn1—N1	94.41(9)	N4 ⁱⁱ —Zn1—O3 ⁱⁱⁱ	86.35(8)
O2 ⁱ —Zn1—N1	87.43(8)	O1—Zn1—O4 ⁱⁱⁱ	148.90(8)
O1—Zn1—N4 ⁱⁱ	90.49(9)	O2 ⁱ —Zn1—O4 ⁱⁱⁱ	91.53(7)
O2 ⁱ —Zn1—N4 ⁱⁱ	88.32(8)	N1—Zn1—O4 ⁱⁱⁱ	89.84(9)
N1—Zn1—N4 ⁱⁱ	174.66(9)	N4 ⁱⁱ —Zn1—O4 ⁱⁱⁱ	87.05(9)
O1—Zn1—O3 ⁱⁱⁱ	90.48(7)	O3 ⁱⁱⁱ —Zn1—O4 ⁱⁱⁱ	58.42(7)
O2 ⁱ —Zn1—O3 ⁱⁱⁱ	149.68(7)		

Symmetry transformations used to generate equivalent atoms:

(i)-x, 1-y, 1-z; (ii) -1+x, -1+y, z; (iii) x, 0.5-y, 0.5+z..

 Table S5. Bond lengths [Å] and angles [°] for complex 4.

Zn1—O4 ⁱ	1.944(4)	Zn2—O5 ⁱⁱ	1.957(4)
Zn1—01	1.971(4)	Zn2—07	1.975(4)
Zn1—N1	1.999(6)	Zn2—N7	2.011(5)
Zn1—N3	2.032(5)	Zn2—N5	2.018(6)
O4 ⁱ —Zn1—O1	114.67(17)	05 ⁱⁱ —Zn2—O7	113.11(18)
O4 ⁱ —Zn1—N1	116.8(2)	O5 ⁱⁱ —Zn2—N7	116.2(2)

O1—Zn1—N1	102.5(2)	07—Zn2—N7	103.3(2)
O4 ⁱ —Zn1—N3	109.95(19)	O5 ⁱⁱ —Zn2—N5	113.1(2)
O1—Zn1—N3	104.86(18)	O7—Zn2—N5	101.4(2)
N1—Zn1—N3	107.1(2)	N7—Zn2—N5	108.3(2)

Symmetry transformations used to generate equivalent atoms:

(i) x, l+y, z; (ii) x, -l+y, z.

7. Fluorescent Emission and Excitation Data

 Table S6. The emission and excitation data for H_4 bptc, 4,4'-bpy, bpe, bpmp, biim-4,

 { $[Zn_2(bptc)(4,4'-bpy) (H_2O)_2] \cdot 2H_2O_n$ (1), { $[Zn(H_2bptc)(bpe)] \cdot 2H_2O_n$ (2),

 { $[Zn_2(bptc)(bpmp)_2] \cdot 2H_2O_n$ (3) and { $[Zn_2(bptc)(biim-4)_2] \cdot H_2O_n$ (4)

Compound	λ_{em}/nm	λ_{ex}/nm
H ₄ bptc	385	326
4,4'-bpy	421	348
bpe	456	360
bpmp	391	341
biim-4	423	360
1	456	366
2	378	335
3	428	340
4	438	347