SUPPLEMENTARY INFORMATION

Hierarchical Cystine Flower Based Electrochemical Genosensor for Detection of Escherichia coli 0157:H7

Chandra Mouli Pandey ${ }^{\text {ab }}$, Ida Tiwarib, Gajjala Sumana ${ }^{*}{ }^{\text {a }}$

Figure S1: Cyclic voltammogram peak current analysis of of $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$ bioelectrode as a function of scan rate ($10-300 \mathrm{mV} / \mathrm{s}$). (A) Variation of current with square root of scan rate and (\mathbf{B}) variation of potential with \log of scan rate.

3.6.2. Estimation of the association constant between cDNA and pDNA/CysNf/Au bioelectrode.

The association constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for binding interaction was determined using the Langmuir isotherm approach in which the isotherm assumes equal binding energy for all binding sites. For K_{a} estimation, the change in Rct was related to the binding of cDNA with immobilized pDNA and is represented by the following equation:
$\mathrm{M}=1-\mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA}) / \mathrm{R}_{\mathrm{ct}}(\mathrm{cDNA})$
where M , is the number of occupied binding sites and $\mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA}), \mathrm{R}_{\mathrm{ct}}(\mathrm{cDNA})$ represents the charge transfer resistance before and after hybridization with cDNA, respectively. In the Langmuir isotherm, M can be related to association constant using the following equation:
$\mathrm{M}=\mathrm{K}_{\mathrm{a}} \mathrm{C} / 1+\mathrm{K}_{\mathrm{a}} \mathrm{C}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}} \mathrm{C}=\mathrm{M} / 1-\mathrm{M} \tag{3}
\end{equation*}
$$

where K_{a} is the association constant and C is the concentration of molecules in the solution. From eqs 2 and 3 above
$\mathrm{K}_{\mathrm{a}} \mathrm{C}=\mathrm{R}_{\mathrm{ct}}(\mathrm{cDNA})-\mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA}) / \mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA})$
$\mathrm{K}_{\mathrm{a}} \mathrm{C}=\Delta \mathrm{R}_{\mathrm{ct}} / \mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA})$
Using eq 5, the curve was plotted between $\Delta \mathrm{R}_{\mathrm{ct}} / \mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA})$ and the concentration of cDNA (Fig. S2) and it was revealed that $\Delta \mathrm{R}_{\mathrm{ct}} / \mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA})$ varies linearly with the concentration and follows the linear equation
$\Delta \mathrm{R}_{\mathrm{ct}} / \mathrm{R}_{\mathrm{ct}}(\mathrm{pDNA})=3.5852+0.2432 \log \mathrm{cDNA}$
with a correlation coefficient of $0.998 . \mathrm{K}_{\mathrm{a}}$ was estimated from the slope of the regression equation and found to be $0.243 \mathrm{M}^{-1}$.

Figure S2. Linearity plot between $\Delta \mathrm{R}_{\mathrm{ct}} / \mathrm{R}_{\mathrm{ct}(\mathrm{pDNA})}$ as a function of cDNA concentration $\left(10^{-6}\right.$ -$\left.10^{-15} \mathrm{M}\right)$ in $5 \mathrm{mM}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-14-} \mathrm{PBS}$ solution at pH 7 for measurement of K_{a}.

Table S1

S. No.	Bare gold $\left({ }^{\circ}\right)$	CysFI/Au (${ }^{\circ}$)	pDNA/CysFl/Au (${ }^{(}$)					
			2h	4h	6h	8h	12h	18h
1	97.96	54.95	42.46	31.21	29.65	29.13	28.98	28.42
2	97.92	55.03	42.35	30.98	29.02	29.23	29.08	28.93
3	97.83	54.69	41.98	30.95	29.38	28.82	29.12	28.63
4	97.90	54.83	42.42	30.89	29.68	29.20	29.18	29.22

Table S1: Variation in the contact angle of $\mathrm{Au}, \mathrm{CysFl} / \mathrm{Au}$, and $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$ ODT/Au as a function of time.

Table S2

Sl. No	Electrode	Solution resistance $\left(\mathbf{R}_{\mathbf{s}}, \mathbf{\Omega}\right)$	Charge transfer resistance $\left(\mathbf{R}_{\text {ct }}, \boldsymbol{\Omega}\right)$
$\mathbf{1}$	$\mathrm{CysFl} / \mathrm{Au}$	84.2	250.4
$\mathbf{2}$	$\mathrm{EDC} / \mathrm{NHS}$ activated $\mathrm{CysFl} / \mathrm{Au}$	24.0	16.7
$\mathbf{3}$	$\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$	24.2	47.5
$\mathbf{4}$	Complementary DNA on $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$	74.0	149.3

Table S2: The change in R_{ct} value for $\mathrm{CysFl} / \mathrm{Au}, \mathrm{EDC} / \mathrm{NHS}$ activated $\mathrm{CysFl} / \mathrm{Au}$, $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$ and complementary DNA on $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$ as a function of time.

Table S3

No. of cycle	Before hybridization $\left(\mathbf{R}_{\mathrm{ct}}, \boldsymbol{\Omega}\right)$	After hybridization $\left(\mathbf{R}_{\mathrm{ct}}, \boldsymbol{\Omega}\right)$	\% change in hybridization efficiency
1	47.28	148.23	0.76
2	47.23	146.07	2.21
3	47.02	143.04	4.24
4	46.88	139.89	6.35
5	46.54	136.26	8.78
6	46.02	133.45	10.37

Table S3: Comparison of the change in hybridization efficiency for $\mathrm{pDNA} / \mathrm{CysFl} / \mathrm{Au}$ bioelectrode with repeated denaturation and rehybridization process.

