Synthesis and inclusion behaviour of a heterotritopic receptor based on hexahomotrioxacalix[3]arene

Cheng-Cheng Jin,^{*a*} Hang Cong,^{*a*} Xin-Long Ni,^{*b*} Xi Zeng,^{*b*} Carl Redshaw^{*c*} and Takehiko Yamato^{**a*}

^{*a*} Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan

^b Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, P.R. China

^c Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK

Contents (P1 to P12 are the page numbers)

P1 – Title, authors and description of supporting information content.

P2 – Figure S1. 1 H NMR spectrum of *cone*-7 (300 MHz, CDCl₃, 298 K).

P3 – Figure S2. 13 C NMR spectrum of *cone*-7 (75 MHz, CDCl₃, 298 K).

P4 – Figure S3. Mass spectra of *cone-*7.

P5 – Figure S4. UV-vis absorption spectra of *cone-7* with various tested metals.

P5 – **Figure S5.** Partial ¹H NMR titration of *cone*-7 \supset K⁺ complex.

- P6 **Figure S5'**. Partial ¹H NMR titration of *cone*-7 \supset Ag⁺; K⁺ \subset [*cone*-7 \supset Ag⁺] complex.
- P7 **Figure S6.** Partial ¹H NMR titration of *cone*-7 \supset Cs⁺ complex.
- P8 Figure S7. Partial ¹H NMR titration of *cone*-7 \supset Li⁺; Ag⁺ \subset [*cone*-7 \supset Li⁺] complex.
- P9 **Figure S8.** Partial ¹H NMR titration of Na⁺ \subset {Li⁺ \subset [*cone*-7 \supset Ag⁺]} complex.
- P10 Figure S9. Job's plot of the extractions of Li^+ with host *cone*-7.

P10 – Figure S10. Molar ratio of Na^+ with host *cone*-7.

P11 – **Figure S11.** Bensei-Hilderbrand plot of *cone-7* for various concentrations of Ag⁺ based on UV-vis spectrum.

P11 – Figure S12. Bensei-Hilderbrand plot of *cone-7* for varous concentrations of Li⁺ based on UV-vis spectrum.

P12 – Figure S13. Bensei-Hilderbrand plot of *cone*-7 for varous concentrations of Na⁺ based on UV-vis spectrum.

Figure S1. ¹H NMR spectrum of *cone*-7 (300 MHz, CDCl₃, 298 K). The corresponding chemical shifts were marked on the ¹H NMR spectrum.

Figure S2. ¹³C NMR spectrum of *cone*-7 (75MHz, CDCl₃, 298 K).

Figure S3. Mass spectra of *cone*-7 in CH₂Cl₂.

Figure S4. UV-vis absorption spectra response of *cone*-7 (1 × 10⁻⁶ M) in CH₂Cl₂-CH₃CN (10:1, v/v) to 1 × 10⁻⁵ M various tested metal ions. $\lambda_{max} = 290$ nm, $\varepsilon = 1.89 \times 10^5$ cm⁻¹M⁻¹.

Figure S5. Partial ¹H NMR titration of *cone*-7/guest complex (H/G = 1:1); a) free *cone*-7; b) *cone*-7 \supset K⁺; Solvent: CDCl₃/CD₃CN(10:1, v/v).

Figure S5'. Partial ¹H NMR titration of *cone*-7/guest complex (H/G = 1:1); a) free *cone*-7; b) *cone*-7 \supset Ag⁺; c) KClO₄ \subset [*cone*-7 \supset Ag⁺]; Solvent: CDCl₃/CD₃CN(10:1, v/v).

¹H NMR titration experiments of *cone*-7 with K^+ ions were conducted. An equivalent of KClO₄ was added to the solution of *cone*-7 in the absence and presence of Ag⁺ ion; no obvious chemical shift of *cone*-7 was observed.

Figure S6. Partial ¹H NMR titration of *cone*-7/guest complex (H/G = 1:1); a) free *cone*-7; b) *cone*-7 \supset Cs⁺; Solvent: CDCl₃/CD₃CN(10:1, v/v).

¹H NMR titration experiments of *cone*-7 with Cs^+ ions were conducted. An equivalent of $CsClO_4$ was added to the solution of *cone*-7 in the absence of Ag^+ ion; no obvious chemical shift of *cone*-7 was observed.

Figure S7. Partial ¹H NMR titration of *cone*-7/guest complex (H/G = 1:1); a) free *cone*-7; b) *cone*-7 \supset Li⁺; c) AgClO₄ \subset [*cone*-7 \supset Li⁺]; Solvent: CDCl₃/CD₃CN(10:1, v/v).

After changing the binding sequence of metal ions, first to form the complex *cone-7* \supset Li⁺ then to form the complex AgClO₄ \subset [*cone-7* \supset Li⁺], we observed the same ¹H NMR spectrum as shown in Figure S7c and Figure 3c was observed. This was consistent with the *cone*-hexahomotrioxacalix[3]arene triamide derivatives *cone-7* serving as heteroditopic receptors for Ag⁺ and Li⁺ simultaneously.

Figure S8. Partial ¹H NMR titration of *cone*-7 /guest complex (H/G = 1:1); a) free *cone*-7; b) *cone*-7 \supset AgClO₄; c) LiClO₄ \subset [*cone*-7 \supset Ag⁺]; d) Na⁺ \subset {Li⁺ \subset [*cone*-7 \supset Ag⁺]}; Solvent: CDCl₃/CD₃CN (10:1, v/v).

We observed the same ¹H NMR spectrum after changing the binding sequence of metal ions as shown in Figure S8d and Figure 6d, which was consistent with the *cone*-hexahomotrioxacalix[3]arene triamide derivatives *cone*-7 serving as heterotritopic receptors for Ag^+ , Li^+ and Na^+ ions simultaneously.

Figure S9. Job's plot of the extractions of Li⁺ with host *cone-***7**.

The stoichiometry of the *cone*-7 complexes with Li^+ was also determined by UV-vis absorption spectrum (CH₂Cl₂/CH₃CN), using the continuous variation method; the absorption reached a maximum at 0.5 mol fraction for this cation, indicating that Li^+ forms a 1:1 complex with *cone*-7.

Figure S10. Molar ratio of Na⁺ with host *cone-***7**.

Figure S11. Bensei-Hilderbrand plot of *cone*-7 for various concentrations of Ag⁺ at 298 K. The association constant (K_a) was calculated to be 2.24 × 10⁵ M⁻¹.

Figure S12. Bensei-Hilderbrand plot of *cone-7* for various concentrations of Li^+ at 298 K. The association constant (K_a) was calculated to be $2.58 \times 10^5 \text{ M}^{-1}$.

Figure S13. Bensei-Hilderbrand plot of *cone*-**7** for various concentrations of Na⁺ at 298 K. The association constant (K_a) was calculated to be 1.55×10^5 M⁻¹.