## Supporting Information

# A rare dihydroxo copper(II) complex with ciprofloxacin; a combined experimental and ONIOM computational study of the interaction of the complex with DNA and BSA 

Hossein Farrokhpour ${ }^{\text {a,* }}$, Hassan Hadadzadeh ${ }^{\text {a,*, }}$, Farivash Darabi ${ }^{\text {a }}$, Fatemeh Abyar ${ }^{\text {a }}$, Hadi Amiri Rudbari ${ }^{\text {b }}$, Tahareh Ahmadi-Bagheri ${ }^{\text {a }}$<br>a Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran<br>${ }^{b}$ Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

Table. S1. The DNA binding constants and parameters derived for ciprofloxacin and the $\mathrm{Cu}(\mathrm{II})$ complex.

|  | compound | $K_{\text {vs }} \mathrm{M}\left({ }^{-1}\right)$ | $K_{\mathrm{q}} \mathrm{M}\left({ }^{-1} \mathrm{~s}^{-1}\right)$ | $K_{\mathrm{b}} \mathrm{M}\left({ }^{-1}\right)$ | $n$ | Ref |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DNA | Ciprofloxacin | $1.09 \times 10^{4}$ | $1.09 \times 10^{12}$ | $3.98 \times 10^{4}$ | 1.12 | 1 |
|  | $\mathrm{Cu}(\mathrm{II})$ complex | $1.2 \times 10^{4}$ | $1.2 \times 10^{12}$ | $1.17 \times 10^{4}$ | 0.88 | work this |

Table. S2. The BSA binding constants and parameters derived for ciprofloxacin and the $\mathrm{Cu}(\mathrm{II})$ complex.

|  | compound | $K_{\mathrm{vs}} \mathrm{M}(-1)$ | $K_{\mathrm{q}} \mathrm{M}\left({ }^{-1} \mathrm{~s}^{-1}\right)$ | $K_{\mathrm{b}} \mathrm{M}\left(^{-1}\right)$ | $n$ | Ref |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BSA | Ciprofloxacin | $2.33 \times 10^{4}$ | $2.33 \times 10^{12}$ | $2.17 \times 10^{4}$ | 0.91 | 2 |
|  | $\mathrm{Cu}(\mathrm{II})$ complex | $6.38 \times 10^{4}$ | $6.38 \times 10^{12}$ | $4.08 \times 10^{4}$ | 0.97 | work this |



Fig. S1 Plot of $\left.\log \left(F_{0}-\mathrm{F}\right) / \mathrm{F}\right)$ versus $\log$ [complex].


Fig. S2 (A) Cyclic voltammograms of $1.0 \times 10^{-3} \mathrm{M}$ of the trans$\left[\mathrm{Cu}(\mathrm{cip})_{2}(\mathrm{OH})_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the absence and presence of CT-DNA (scan rate $=0.1$ $\mathrm{V} / \mathrm{s}$ ). (B) The plots of the cathodic peak currents of the complex in the absence and presence of CT-DNA versus the square root of the scan rates ( $v^{1 / 2}$ ).


Fig. S3 Electronic absorption spectra of BSA in the presence of the $\mathrm{Cu}(\mathrm{II})$ complex. (A) (pink) The absorption spectra of BSA-complex system when the mol ratio is $1: 1$; (B) (blue) the absorption spectra complex only; (C) (red) the absorption spectra of BSA only; (D) (green) the difference absorption spectra between the BSA-complex and the complex at the same concentration.


Fig. S4 Determination of the complex-BSA binding constant and the number of binding sites on BSA.


Fig. S5 Molecular docking of the complex with DNA (A) and BSA (B).

## References

1 L. Fotouhi, Z. Atoofi and M. M. Heravi, Talanta., 2013, 103, 194-200.
2 Y.J. Hu, Y. Ou-Yang, Y. Zhang and Y. Liu, Protein J., 2010, 29, 234-241.

