Electronic supplementary information for Concurrent conductance and transition voltage spectroscopy study of scanning tunneling microscopy vacuum junctions. Does it unravel new physics?

Ioan Bâldea * a \%

S1 Tunneling current

The tunneling electron current per unit area I along the z direction across an energy barrier placed between two (STMtip and substrate) electrodes under bias $V\left(\mu_{t}-\mu_{s}=e V>0\right)$ having infinite transverse (x, y) extension can be expressed as ${ }^{1,2}$

$$
I_{\text {tunnel }}=K\left[e V \int_{-E_{F}}^{\mu_{s}} \mathscr{T}\left(E_{z} ; V\right) d E_{z}-\int_{\mu_{s}}^{\mu_{t}} E_{z} \mathscr{T}\left(E_{z} ; V\right) d E_{z}\right]
$$

Once the barrier potential is known [eqn (1)], the transmission coefficient \mathscr{T} can be obtained exactly by numerically solving the Schrödinger equation. ${ }^{3}$. The numerical factor entering eqn (5) can be easily obtained by using the value of the prefactor

$$
\begin{equation*}
K=4 \pi e m h^{-3}=1.618 \times 10^{8} \mathrm{pA} \mathrm{~nm}^{-2} \mathrm{eV}^{-2} \tag{S2}
\end{equation*}
$$

where m and $-e$ stand for electron mass and charge, respectively.

Although we have used eqn (S1) for all numerical results presented in the main text, we mention that results obtained by assuming a highly lateral constriction ${ }^{2,4}$ (one-channel Landauer formula)

$$
\begin{equation*}
I_{\text {tunnel }} \propto \int_{\mu_{s}}^{\mu_{t}} \mathscr{T}\left(E_{z} ; V\right) d E_{z} \tag{S3}
\end{equation*}
$$

are qualitatively similar and do not alter the conclusions of this work.

S2 Effects relevant for a realistic rarrier

Fig. S1 and Fig. S2 demonstrate that attempts to make the tunneling barrier more realistic do not improve the agreement between theory and experiment: V_{t} continues to increase roughly

[^0]linear with $1 / d$, and G exhibits an overall exponential decay with increasing d. To show that the potential profile has no substantial impact on V_{t}, we present in Fig. S1a results for two extreme situations. The linear potential drop of eqn (2) is one extreme idealization. The other extreme idealization would be a flat potential [z-independent V_{b} in eqn (1)]. Fig. S1b and Fig. S1c show that considering rather broad distributions of nanogap sizes and work functions rather than sharp d and Φ 's do not improve the agreement with experiment.

S3 Ghost transmission

Adding a small contribution τ [given in the legend of Fig. S3) to the transmission by tunneling ($\mathscr{T} \rightarrow \mathscr{T}+\tau$ in the RHS of eqn (S1] - which could mimics an extra contribution due to pseudo-diffusion or hopping has an effect similar to the ghost current. This is visible by comparing Fig. S3 shown below with Fig. 3 of the main text.

S4 The activation energy: an important issue for charge hopping

To make clear that fact that the large activation energies extracted from the experimental data ${ }^{7,8}$ represent an important issue for assigning the charge transport in longer molecules as entirely due to hopping, we briefly expose the main difficulty, closely following ref. 7.
Within Marcus' electron transfer theory, the activation energy E_{a} that determines the Arrhenius temperature (T) dependence of the conductance

$$
\begin{equation*}
G \propto \exp \left(-E_{a} / k_{B} T\right), \tag{S4}
\end{equation*}
$$

where k_{B} is Boltzmann's constant, can be expressed in terms of the thermodynamic driving force ΔF and the reorganization energy λ^{7}

$$
\begin{equation*}
E_{a}=\frac{(\lambda+\Delta F)^{2}}{4 \lambda} \simeq \frac{\lambda}{4} \tag{S5}
\end{equation*}
$$

The above approximation is justified by the smallness of the driving force $\Delta F(\ll \lambda)$; typical values are a few tens of meV for ΔF and a few tenths of eV for $\lambda . \Delta F$ is basically given by the variation in hopping site energies related to the potential drop across the junction. For CP-AFM junctions, the above reorganization energy entering eqn (S5) comprises the contributions of intramolecular reorganization $\left(\lambda_{i}\right)$ and of environmental reorganization $\left(\lambda_{o}\right)$

$$
\begin{equation*}
\lambda=\lambda_{o}+\lambda_{i} \approx 2 \lambda_{i} . \tag{S6}
\end{equation*}
$$

λ_{o} embodies polarization effects of ~ 100 molecules that form a CP-AFM junction. As done above, a common procedure is to assume

$$
\begin{equation*}
\lambda_{o} \approx \lambda_{i} \tag{S7}
\end{equation*}
$$

and to estimate the intramolecular reorganization λ_{i} by means of DFT calculations ${ }^{7}$. For the longer molecular species that exhibit thermally activated conduction, calculations at DFT/M062X/6-61G** level yielded values $\lambda_{i}=$ $0.30-0.10 \mathrm{eV}$ for the ONI series (cf. Table S4 of ref. 7) and $\lambda_{i}=0.41-0.17 \mathrm{eV}$ for the OPI series (cf. Table S6 of ref. 7). When using the B3LYP functional instead of M062X, values smaller by a factor of at least 2 were found ($c f$. Tables S5 and S7 of ref. 7). Even if the larger M062X-based λ_{i}-values are used, by comparing the activation energies deduced from eqn (S5) and (S6) with the experimental values ($E_{a} \approx 0.54-0.62 \mathrm{eV}$ for ONI's ${ }^{7}$ and $E_{a} \approx 0.28 \mathrm{eV}$ for OPI's ${ }^{9}$) one has to conclude that the mismatch amounts to a factor of at least 2-3.

Although this is already quite important in view of the exponential dependence of eqn (S4) one should still note that the above λ_{i} should represent drastic overestimations: they embody the contributions of all intramolecular vibrations, while one should merely consider the contributions of very low frequency modes, which are the only ones can be thermally activated ${ }^{10}$.

Notes and references

1 A. Sommerfeld and H. Bethe, Handbuch der Physik, Julius-SpringerVerlag, Berlin, 1933, vol. 24 (2), p. 446.
I. Bâldea and H. Köppel, Phys. Stat. Solidi (b), 2012, 249, 1791-1804.
I. Bâldea and H. Köppel, Phys. Lett. A, 2012, 376, 1472 - 1476.
I. Bâldea, Europhys. Lett., 2012, 98, 17010.
I. Bâldea, J. Phys. Chem. Solids, 2012, 73, 1151-1153.

6 I. Bâldea, Nanoscale, 2013, 5, 9222-9230.
7 S. H. Choi, C. Risko, M. C. R. Delgado, B. Kim, J.-L. Bredas and C. D. Frisbie, J. Amer Chem. Soc., 2010, 132, 4358 - 4368.
8 T. Hines, I. Diez-Perez, J. Hihath, H. Liu, Z.-S. Wang, J. Zhao, G. Zhou, K. Müllen and N. Tao, J. Am. Chem. Soc., 2010, 132, 11658-11664.

9 S. H. Choi, B. Kim and C. D. Frisbie, Science, 2008, 320, 1482-1486.
10 I. Bâldea, J. Phys. Chem. C, 2014, 118, 8676-8684.

Fig. S1 Transition voltage V_{t} as a function of the inverse nanogap size d for STM-tip of tungsten $\left(\Phi_{W}=4.55 \mathrm{eV}\right)$ and substrates of Pt $\left(\Phi_{P t}=5.65 \mathrm{eV}\right)$ and $\mathrm{Au}\left(\Phi_{A u}=5.2 \mathrm{eV}\right)$. Neither (a) ignoring image charges nor the potential profile, neither a uniform distribution of (b) d nor (c) of Pt-substrate work function W having finite widths denoted by $\delta \ldots$ and indicated in the legend qualitatively affects the approximate linear increase $V_{t} \propto 1 / d$.

Fig. S2 Ohmic conductance G as a function of the nanogap size d for STM-tip of tungsten $\left(\Phi_{W}=4.55 \mathrm{eV}\right)$ and substrates of Pt $\left(\Phi_{P t}=5.65 \mathrm{eV}\right)$ and $\mathrm{Au}\left(\Phi_{A u}=5.2 \mathrm{eV}\right)$. Neither a uniform distribution of (a) d nor (b) of Pt-substrate work function W having finite widths denoted by $\delta \ldots$ and indicated in the legend qualitatively affects the almost exponential decay.

Fig. S3 (a) Transition voltage V_{t} and (b) Ohmic conductance G as a function of the nanogap size d for STM-tip of tungsten ($\Phi_{W}=4.55 \mathrm{eV}$) and substrates of Pt at positive biases $\left(\Phi_{P t}=5.65 \mathrm{eV}\right)$ in the presence of a ghost channel of dimensionless resistivity $\bar{\rho}=10^{v} . v$-values are given in the legend. Image charge effects are included using the exact classical interaction ${ }^{2,4,5}$, which is cutoff close to electrodes using the procedure described elsewhere ${ }^{6}$.

[^0]: ${ }^{a}$ Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
 \ddagger E-mail: ioan.baldea@pci.uni-heidelberg.de. Also at National Institute for Lasers, Plasmas, and Radiation Physics, Institute of Space Sciences, Bucharest, Romania

