Supporting information for

Probing the location of methanol in methanol/AOT/n-heptane system: True microemulsion or bi-continuous medium?

Aniruddha Ganguly, Bijan Kumar Paul^a, Soumen Ghosh, Nikhil Guchhait* Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Calcutta-700009, India

*To whom correspondence should be addressed. Tel.: +91-33-2350-8386. Fax: +91-33-2351-9755. E-mail: nguchhait@yahoo.com (N.G.).

^aPresent address: Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 023, Madhya Pradesh, India.

Figure S1: (a) Representative time-resolved fluorescence decay profiles ($\lambda_{ex} = 375$ nm, $\lambda_{monitored} = \lambda_{max}(em)$) of the probe (9-MA) in AOT/n-heptane medium in the presence of increasing water content. Profiles (i) \rightarrow (vi) correspond to W₀ = 0, 2, 4, 6, 8, 10. (b) decay profiles ($\lambda_{ex} = 375$ nm, $\lambda_{monitored} = \lambda_{max}(em)$) of the fluorophore (9-MA) in AOT/n-heptane medium in the presence of increasing methanol content. Profiles (i) \rightarrow (vi)

correspond to $W_S = 0, 2, 4, 6, 8, 10$. (c) decay profiles ($\lambda_{ex} = 375 \text{ nm}, \lambda_{monitored} = \lambda_{max}(em)$) of 9-MA in pure n-heptane medium in the presence of increasing methanol content Profiles (i) \rightarrow (vi) correspond to $P_S = 0, 2, 4, 6, 8, 10$. The sharp black profiles on the extreme left of all the figures represent the instrument response function (IRF).

Figure S2: (a) and (b) Fluorescence depolarization profile of 9-MA in AOT/n-heptane medium in the presence of increasing water content as indicated in the figure legend.