Facile and efficient synthesis of 1-haloalkynes via DBU-mediated

reaction of terminal alkynes and N-haloimides under mild conditions

Mengru Li,^a Yueju Li,^a Baozhong Zhao,^a Fushun Liang^{*,a} and Long-Yi Jin^{*,b}

Department of Chemistry, Northeast Normal University, Changchun 130024, China liangfs112@nenu.edu.cn

Table of contents

I. General	S2
II. Synthesis and analytical data of 2-6	S2
III. Copies of ¹ H and ¹³ C NMR spectra for compounds 2-6	S10

I. General

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian 500 MHz and 125 MHz, respectively, and TMS as internal standard.High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. Synthesis and analytical data of 2-4

General procedure for the preparation of **2** (**2a** as anexample): To a solution of 1-chloro-4-ethynylbenzene**1a** (136.6 mg, 1.0 mmol) in MeCN (2.0 mL) was added NBS (195.8 mg, 1.1 mmol) and DBU (0.159 mL, 1.1 mmol). The mixture was stirred at room temperature for 1 min. The reaction mixture was poured into water and then extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with water (3 × 10 mL), filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel, petroleum ether as eluent) to give **2a** (213 mg, 99%) as a white solid.

1-(bromoethynyl)-4-chlorobenzene (2a)

White solid. m.p. 76-78 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.29$ (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 51.0$, 78.9, 121.1, 128.7, 133.2, 134.8; HRMS (ESI) m/z calcd for C₈H₄BrCl [M+H]⁺: 214.9263; found: 214.9259.

1-(bromoethynyl)-2-chlorobenzene (2b)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.17-7.23 (m, 1H), 7.24-7.26 (m, 1H), 7.36-7.38 (m, 1H), 7.45-7.47 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ = 55.3, 76.9, 122.5, 126.4, 129.2, 129.6, 133.8, 136.3; HRMS (ESI) m/z calcd for C₈H₄BrCl [M+H]⁺: 214.9263; found: 214.9268.

1-(bromoethynyl)-4-fluorobenzene (2c)

White solid. m.p. 39-41 °C.¹H NMR (500 MHz, CDCl₃): δ = 7.00 (t, *J* = 8.5 Hz, 2H), 7.41-7.44 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ = 49.4, 78.8, 115.6, 118.6, 133.8, 163.5; HRMS (ESI) m/z calcd for C₈H₄BrF [M+H]⁺: 198.9559; found: 198.9564.

(bromoethynyl)benzene (2d)

Colourless oil.¹H NMR (500 MHz, CDCl₃): δ = 7.29-7.35 (m, 3H), 7.44 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ = 49.7, 80.0, 122.6, 128.3, 128.7, 132.0; HRMS (ESI) m/z calcd for C₈H₅Br [M+H]⁺: 180.9653; found: 180.9657.

1-(bromoethynyl)-4-methoxybenzene (2e)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.82 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ = 47.8, 55.2, 79.9, 113.9, 114.7, 133.4, 159.8; HRMS (ESI) m/z calcd for C₉H₇BrO [M+H]⁺: 210.9759; found: 210.9752.

1-(bromoethynyl)-4-methylbenzene (2f)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.34$ (s, 3H), 7.11 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 21.5$, 48.7, 80.1, 119.6, 129.0, 131.8, 138.8; HRMS (ESI) m/z calcd for C₉H₇Br [M+H]⁺: 194.9809; found: 194.9813.

1-(bromoethynyl)-3-methylbenzene (2g)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.30$ (s, 3H), 7.13 (d, J = 7.5 Hz, 1H), 7.16-7.25 (m, 1H), 7.29 (d, J = 11.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 21.1$, 49.2, 80.2, 122.4, 128.2, 129.0, 129.6, 132.5, 138.0; HRMS (ESI) m/z calcd for C₉H₇Br [M+H]⁺: 194.9809; found: 194.9805.

1-(bromoethynyl)-4-(tert-butyl)benzene (2h)

Colourless oil.¹H NMR (500 MHz, CDCl₃): $\delta = 1.29$ (s, 9H), 7.31 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 31.1$, 34.7, 48.7, 80.1,

119.6, 125.3, 131.7, 131.8, 151.9; HRMS (ESI) m/z calcd for $C_{12}H_{13}Br [M+H]^+$: 237.0279; found: 237.0284.

2-(bromoethynyl)thiophene (2i)

Yellow oil. m.p. 76-78 °C.¹H NMR (500 MHz, CDCl₃): $\delta = 6.95-6.97$ (m, 1H), 7.23-7.25 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 54.1$, 73.4, 122.7, 126.8, 127.3, 132.8; HRMS (ESI) m/z calcd for C₆H₃BrS [M+H]⁺: 186.9217; found: 186.9215.

(4-bromobut-3-yn-1-yl)benzene(2j)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.49$ (t, J = 7.5 Hz, 2H), 2.83 (t, J = 7.5 Hz, 2H), 7.20-7.25 (m, 3H), 7.30 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 21.8$, 34.6, 38.7, 79.6, 126.4, 128.3, 128.4, 140.2; HRMS (ESI) m/z calcd for C₁₀H₉Br [M+H]⁺: 208.9966; found: 208.9962.

(((3-bromoprop-2-yn-1-yl)oxy)methyl)benzene (2k)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 4.17$ (s, 2H), 4.57 (s, 2H), 7.33 (m, 1H), 7.33-7.34 (m, 4H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 46.1$, 57.9, 71.6, 76.1, 127.9, 128.0, 128.4, 137.1; HRMS (ESI) m/z calcd for C₁₀H₉BrO [M+H]⁺: 224.9915; found: 224.9913.

1-(bromoethynyl)cyclohex-1-ene (2l)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.55 \cdot 1.65$ (m, 4H), 2.06-2.11 (m, 4H), 6.14-6.15 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 21.3$, 22.1, 25.6, 28.8, 46.2, 81.8, 120.4, 136.4; HRMS (ESI) m/z calcd for C₈H₉Br [M+H]⁺: 184.9966; found: 184.9970.

1-chloro-4-(iodoethynyl)benzene (3a)

White solid. m.p. 81-83 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.28 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ = 7.7, 92.9, 121.8, 128.6, 133.5, 134.9; HRMS (ESI) m/z calcd for C₈H₄BrI [M+H]⁺: 262.9124; found: 262.9129.

1-(iodoethynyl)-3-methylbenzene (3b)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 2.30$ (s, 3H), 7.06 (s, 1H), 7.12 (d, J = 7.0 Hz, 1H), 7.19 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 5.6$, 21.2, 94.3, 123.1, 128.1, 129.3, 129.7, 132.8, 137.9; HRMS (ESI) m/z calcd for C₉H₇I[M+H]⁺: 242.9671; found: 242.9679.

1-(iodoethynyl)cyclohex-1-ene (3c)

Yellow oil. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.54-1.57$ (m, 2H), 1.61-1.64 (m, 2H), 2.10- 2.11 (m, 4H), 6.13 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 2.0, 21.3, 22.1, 25.5, 28.9, 96.1, 121.2, 137.1$; HRMS (ESI) m/z calcd for C₈H₉I [M+H]⁺:232.9827; found: 232.9821.

1-chloro-4-(chloroethynyl)benzene (4a)

White solid. m.p.72-74 °C.¹H NMR (500 MHz, CDCl₃): $\delta = 7.27-7.30$ (m, 2H), 7.35-7.37 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): $\delta = 68.3$, 69.1, 120.6, 128.7, 133.2, 134.7; HRMS (ESI) m/z calcd for C₈H₄Cl₂ [M+H]⁺: 170.9768; found: 170.9765.

1-(chloroethynyl)-4-methoxybenzene (4b)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.81-6.84 (m, 2H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.42 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ = 55.2, 66.3, 69.2, 113.9, 114.1, 133.3, 159.7; HRMS (ESI) m/z calcd for C₉H₇ClO [M+H]⁺: 167.0264; found: 167.0268.

(chloroethynyl)benzene(4c)

Colourless oil. ¹H NMR (500 MHz, CDCl₃): δ = 7.29-7.35 (m, 3H), 7.43-7.45 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ = 68.0, 69.3, 122.1, 128.3, 128.6, 131.9; HRMS (ESI) m/z calcd for C₈H₅Cl [M+H]⁺: 137.0158; found: 137.0164.

1,4-bis(bromoethynyl)benzene (5)

White solid. m.p.161-163 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37$ (s, 4H);¹³C NMR (CDCl₃, 125 MHz): $\delta = 52.2$, 79.5, 122.9, 131.9; HRMS (ESI) m/z calcd for C₁₀H₄Br₂ [M+H]⁺: 282.8758; found: 282.8752.

1,4-bis(iodoethynyl)benzene (6)

White solid. m.p. 182-184 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.37$ (s, 4H);¹³C NMR (CDCl₃, 125 MHz): $\delta = 9.13$, 93.5, 123.7, 132.1; HRMS (ESI) m/z calcd for C₁₀H₄I₂ [M+H]⁺: 378.8481; found: 378.8486.

III. Copies of ¹H and ¹³C NMR spectra for compounds 2

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

