Supporting Information

Melting and β to α transition behavior of β -PBA and the β -PBA/PVPh blend investigated by synchrotron SAXS and WAXD

Xiaoli Sun,[†] Junteng Liu, [‡] Isao Takahashi[§] and Shouke Yan^{†*}

† State Key Laboratory of Chemical Resource Engineering and ‡ Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China (*skyan@mail.buct.edu.cn*)

[§] School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan.

Supporting Information 1: One-dimensional Correlation Function Analysis

The characteristic parameters such as the average thickness amorphous layer [la], the average thickness of the lamellar crystallites [lc], and the average long period [L] were estimated from the one-dimensional correlation function, K(z), according to the method proposed by Strobl and Schneider1, as demonstrated in Figure S1-1. The average long period is determined by the value z at the first maximum of K(z). The average thickness of one of the two layers (l₁) is given by the intersection point between the straight line in the self-correlation part (straight line a) and base line drawn through the first minimum of K(z) parallel to the z-axis (straight line b). The average thickness of the other layer is then obtained from $l_2 = L - l_1$. The assignment of l_1 and l_2 to la and lc are done with respect to information of Φ_c calculated from WAXD data.

Figure S1

(c) Schematic of stack melting

Figure S3 The in situ lamellar morphology change of neat PBA in the heating process tested by AFM.