Electronic Supplementary Information

Antioxidant activity of selected natural polyphenolic compounds from Soybean via peroxyl radicals scavenging.

Carolina Caicedo,^a Cristina Iuga,^b Romina Castañeda-Arriaga^a and J. Raúl Alvarez-Idaboy*^a

 ^aDepartamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México.
 Circuito Exterior SN. Ciudad Universitaria, C.P. 04510 Coyoacán, D.F. México.
 ^bUniversidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, 04960 México, D.F., Mexico.

*E-mail: jidaboy@unam.mx

TABLE OF CONTENTS.

Figure S1.	a) Optimized structures of the polyphenolic compounds under study. b) Dihedral angles determination	S2
Table S1.	Theoretical main geometrical parameters (bond length and dihedral angles) of the compounds under study	S2
Table S1.	Gibbs free energies for the deprotonated structures of each molecule	S3
Table S3.	Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (<i>k</i>), in M ⁻¹ .s ⁻¹ , relative branching ratios (Γ), and imaginary frequencies for the HT channels in the reaction of neutral polyphenolic compounds with the peroxyl free radicals, in water at 298.15 K.	S4
Table S4.	Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (<i>k</i>), in M ⁻¹ .s ⁻¹ , relative branching ratios (Γ), and imaginary frequencies for the HT channels in the reaction of neutral polyphenolic compounds with the peroxyl free radicals, in pentylethanoate at 298.15 K.	S5
Figure S2.	Transition structures (TS) in the neutral Genistein against for the HT mechanism	S6
Table S5.	Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (<i>k</i>), in M ⁻¹ .s ⁻¹ , relative branching ratios (Γ), and imaginary frequencies for the HT channels in the reaction of deprotonated polyphenolic compounds with the peroxyl free radicals, in water at 298.15 K.	S7
Figure S3.	Transition structures (TS) in the deprotonated Genistein against for the HT mechanism	S 8
Table S6.	T1 diagnostic for transition states involved H abstractions by •OOH radical	S9

Figure S1. a) Optimized structures of the polyphenolic compounds under study in aqueous media. b) Dihedral angles determination.

Table S1. Theoretical main geometrical parameters (bond length and dihedral angles) of the compounds under stu	ıdy.
--	------

Neutral	C-O-C ^a	C=O	С-ОН	О-Н	C-C-C=C ^b	C-C-C=C ^b
Compounds		(Å) In water and	l pentylethanoate		(°) In water	(°) In pentylethanoate
DAI	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-50.55	-47.32
GLY	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-51.86	-46.80
EQL	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-121.1	-121.71
GEN	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-49.36	-47.63
6-HDAI	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-49.94	-46.42
8-HGLY	1.35 ± 0.001	1.23 ± 0.002	1.36 ± 0.001	0.96 ± 0.002	-51.07	-47.82

. ^aAverage C-O-C bond length. ^bC-C-C=C dihedral angle marked in color aqua in the Figure S1b.

Monoanonic Species	Deprotonated channel	G (kcal/mol) In water
EOI	7 OH	-803.37
EQL	4′OH	-803.37
DAI	7 OH	-878.06
DAI	4′OH	-878.06
CL V	7 OH	-992.58
UL I	4′OH	-992.56
	7 OH	-953.31
GEN	5 OH	-953.31
	4′OH	-953.31
	7 OH	-953.31
6-HDAI	6 OH	-953.31
	4′OH	-953.30
	7 OH	-1067.82
8-HGLY	8 OH	-1067.82
	4´OH	-1067.81

Table S2. Gibbs free energies for the deprotonated structures of each molecule.

Dianonic Species	Deprotonated channels	G (kcal/mol) In water
GEN	7 OH - 4'OH	-952.86
GEN	7 OH - 5 OH	-952.85
6 HDAI	7 OH - 4'OH	-952.85
0-11DAI	7 OH - 6 OH	-952.84
8 HCI V	7 OH - 4′OH	-1067.36
0-110L I	7 OH - 8 OH	-1067.35

Table S3. Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (k), in M ⁻¹ .s ⁻¹ , relative branching ratios (Γ),
and imaginary frequencies for the HT channels in the reaction of neutral polyphenolic compounds with the peroxyl free radicals, in water at
298.15 K.

Neutral Compound	Channel	ΔG	ΔG^{\neq}	ΔH≠	Tunnel	k	Г	i Freq
	•		1	•00H				
	7 (OH)	6.78	25.73	14.55	399.3	2.51 x 10 ⁻²	0.1	2761
DAI	4`(OH)	-0.16	21.83	10.34	757.6	3.44 x 10 ¹	99.9	2596
	7 (OH)	-1.57	19.61	9.39	908.6	1.75 x 10 ³	96.0	2753
EQL	4`(OH)	-0.84	21.06	9.79	440.1	7.33 x 10 ¹	4.0	2475
	7 (OH)	5.39	20.97	8.78	29.6	5.74 x 10	3.0	2993
GLY	4`(OH)	0.36	20.16	8.14	247.4	1.88 x 10 ²	97.0	2569
	7 (OH)	8.05	26.71	15.22	507.9	6.10 x 10 ⁻³	0.0	3156
GEN	5 (OH)	8.49	29.75	18.70	3953.3	2.80 x 10 ⁻⁴	0.0	3237
	4`(OH)	0.19	21.54	10.42	594.5	4.37 x 10 ¹	100.0	2529
	7 (OH)	0.73	24.04	12.09	3352.7	3.65 x 10	0.9	2892
6-HDAI	6 (OH)	-2.09	19.92	8.65	280.9	3.20 x 10 ²	76.1	2426
	4`(OH)	-0.22	21.09	10.08	613.9	9.71 x 10 ¹	23.1	2561
	7 (OH)	3.70	19.70	8.22	112.1	1.86 x 10 ²	23.0	2892
8-HGLY	8 (OH)	-3.32	19.07	7.65	93.5	4.47 x 10 ²	55.4	2158
	4`(OH)	-0.37	21.11	10.40	1143.1	1.74 x 10 ²	21.6	2707
				•OOCH	3			
DAL	7 (OH)	7.31	25.73	14.55	266.0	1.67 x 10 ⁻²	0.1	2847
DAI	4`(OH)	0.37	22.26	10.54	715.0	1.57 x 10 ¹	99.9	2604
EOI	7 (OH)	-0.60	20.59	9.41	2237.5	8.23 x 10 ²	76.1	3227
EQL	4`(OH)	0.13	20.91	9.55	1201.6	2.58 x 10 ²	23.9	3035
CLV	7 (OH)	6.36	21.42	8.20	7.0	9.41 x 10 ⁻¹	1.6	2965
GLI	4`(OH)	1.33	21.19	8.13	434.6	5.81 x 10 ¹	98.4	3144
	7 (OH)	9.02	26.33	14.13	62.4	1.42 x 10 ⁻³	0.0	2883
GEN	5 (OH)	9.46	29.51	18.25	643.1	6.08 x 10 ⁻⁵	0.0	2941
	4`(OH)	1.15	22.25	10.44	2414.5	5.37 x 10 ¹	100.0	3267
	7 (OH)	1.70	23.43	11.35	1353.9	4.13 x 10	0.6	2920
6-HDAI	6 (OH)	-1.12	19.70	7.57	249.5	4.12 x 10 ²	63.3	2611
	4`(OH)	0.75	21.32	10.02	2190.8	2.35 x 10 ²	36.1	3261
	7 (OH)	-2.74	19.40	7.06	114.1	3.13 x 10 ²	29.3	2328
8-HGLY	8 (OH)	-2.36	18.84	6.40	93.2	6.58 x 10 ²	61.6	2368
	4`(OH)	0.24	21.90	10.30	2404.8	9.70 x 10 ¹	9.1	3184

Neutral Compound	Channel	ΔG	ΔG^{\neq}	ΔH [≠]	Tunnel	k	Г	Freq i
			•	ООН				
DH	7 (OH)	6.75	23.78	13.24	104.1	1.76 x 10 ⁻¹	0.4	2430
DAI	4`(OH)	0.75	20.37	9.32	81.7	4.36 x 10 ¹	99.6	2081
FOI	7 (OH)	0.69	19.91	9.23	116.6	1.35 x 10 ²	73.7	2213
EQL	4`(OH)	1.10	20.24	9.36	72.5	4.82 x 10 ¹	26.3	2061
<u>a</u>	7 (OH)	4.93	24.02	12.69	215.9	2.43 x 10 ⁻¹	0.1	2515
GLY	4`(OH)	0.67	19.25	9.48	70.3	2.49 x 10 ²	99.9	2010
	7 (OH)	9.19	25.09	14.11	49.0	9.06 x 10 ⁻³	0.1	2497
GEN	5 (OH)	15.90	29.96	18.85	9.0	4.49 x 10 ⁻⁷	0.0	3446
	4`(OH)	1.44	21.20	10.10	92.3	1.21 x 10 ¹	99.9	2081
	7 (OH)	0.17	24.23	12.69	1609.8	1.27 x 10	0.6	2537
6-HDAI	6 (OH)	-2.53	19.40	7.89	60.9	1.67 x 10 ²	82.1	1996
	4`(OH)	0.73	20.48	9.45	79.5	3.52 x 10 ¹	17.3	2057
	7 (OH)	-1.97	20.00	8.12	226.6	9.64 x 10 ¹	69.2	2428
8-HGLY	8 (OH)	-1.82	19.83	8.45	38.0	1.62 x 10 ¹	11.6	1840
	4`(OH)	0.93	20.77	8.90	62.8	2.67 x 10 ¹	19.2	2025
			•(DOCH ₃			•	
DAI	7 (OH)	8.64	24.65	12.93	27.1	1.05 x 10 ⁻²	0.1	2447
DAI	4`(OH)	2.64	21.58	9.69	134.0	9.27 x 10	99.9	2490
EOI	7 (OH)	2.58	21.08	9.86	152.1	6.47 x 10 ¹	55.1	2524
EQL	4`(OH)	2.99	20.35	9.75	123.8	5.27 x 10 ¹	44.9	2516
GLV	7 (OH)	6.82	24.28	12.88	75.9	5.51 x 10 ⁻²	0.2	2511
GLI	4`(OH)	2.56	21.19	10.00	171.8	2.30 x 10 ¹	99.8	2502
	7 (OH)	11.08	25.24	13.48	6.4	9.22 x 10 ⁻⁴	0.1	2443
GEN	5 (OH)	17.79	33.97	23.41	39.3	1.90 x 10 ⁻⁹	0.0	2527
	4`(OH)	3.33	22.69	10.43	151.6	1.61 x 10	99.9	2507
	7 (OH)	2.06	25.41	12.74	707.1	7.62 x 10 ⁻²	0.1	2479
6-HDAI	6 (OH)	-0.64	19.76	6.41	71.9	1.07 x 10 ²	95.2	2299
	4`(OH)	2.62	21.98	9.96	151.2	5.33 x 10	4.7	2476
	7 (OH)	-0.08	20.23	8.10	97.6	6.60 x 10 ¹	43.0	2205
8-HGLY	8 (OH)	0.07	19.79	19.79	58.1	8.25 x 10 ¹	53.8	2168
	4`(OH)	2.82	22.06	22.06	160.9	4.95 x 10	3.2	2467

Table S4. Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (*k*), in M⁻¹.s⁻¹, relative branching ratios (Γ), and imaginary frequencies for the HT channels in the reaction of neutral poliphenolic compounds with the peroxyl free radicals, in pentylethanoate at 298.15 K.

Figure S2. Transition structures (TS) in the neutral Genistein against •OOH for the HT mechanism.

Table S5. Gibbs free energy of reaction (ΔG) and activation (ΔG^{\neq}), in kcal/mol, rate constants (*k*), in M⁻¹.s⁻¹, relative branching ratios (Γ), and imaginary frequencies for the HT channels in the reaction of deprotonated poliphenolic compounds with the peroxyl free radicals, in water at 298.15 K.

Monoanionic Species	Channel	ΔG	ΔG≠	ΔH^{\neq}	Tunnel	k	Г	i Freq
			•(ООН				
DAI	4`(OH)	-0.75	21.37	9.85	720.1	7.10 x 10 ¹	100.0	2609
EQL	7 (OH)	-1.96	19.55	9.40	905.9	1.94 x 10 ³	100.0	2738
GLY	4`(OH)	-0.38	20.33	8.12	283.4	1.62 x 10 ²	100.0	2566
CEN	5 (OH)	6.70	27.68	16.97	2603.1	6.08 x 10 ⁻³	0.0	3060
GEN	4`(OH)	-0.60	21.34	10.10	608.3	6.36 x 10 ¹	100.0	2527
	6 (OH)	-6.25	17.71	6.59	522.2	2.48 x 10 ⁴	99.8	3250
6-HDAI	4`(OH)	-0.97	21.41	9.94	656.3	6.05 x 10 ¹	0.2	2562
	8 (OH)	-13.45	14.35	2.88	15.2	2.10 x 10 ⁵	100.0	2584
8-NUL I	4`(OH)	3.51	21.09	9.93	108.3	1.71 x 10 ¹	0.0	2568
			•0	OCH ₃				
DAI	4`(OH)	-0.22	21.90	10.05	685.0	1.76 x 10 ¹	100.0	2600
EQL	7 (OH)	-0.99	20.63	9.26	2569.2	8.82 x 10 ²	100.0	3297
GLY	4`(OH)	0.59	20.95	7.97	641.2	1.29 x 10 ²	100.0	3171
CEN	5 (OH)	7.67	26.88	15.22	158.4	1.43 x 10 ⁻³	0.0	2625
GEN	4`(OH)	0.37	21.69	9.93	2553.5	1.46 x 10 ²	100.0	3306
6 HDAI	6 (OH)	-5.28	17.42	5.47	226.5	1.76 x 10 ⁴	98.2	3241
0-IIDAI	4`(OH)	0.00	21.03	9.70	1879.3	3.29 x 10 ²	1.8	3113
8 HCLV	8 (OH)	-12.48	13.34	1.13	2.8	2.13 x 10 ⁵	100.0	2212
0-HULI	4`(OH)	4.48	21.45	9.78	93.2	8.03 x 10	0.0	3229

Dianionic Species	Channel	ΔG	ΔG^{\neq}	ΔH≠	Tunnel	k	i Freq	
•OOH								
GEN	5 (OH)	3.43	27.51	17.01	36081.4	1.12 x 10 ⁻¹	3163	
6-HDAI	6 (OH)	-6.41	17.86	6.51	659.8	2.46 x 10 ⁴	3471	
8-HGLY	8 (OH)	-13.98	14.48	2.68	13.6	1.51 x 10 ⁵	2669	
	•OOCH3							
GEN	5 (OH)	4.40	27.81	17.02	17731.4	3.31 x 10 ⁻²	3181	
6-HDAI	6 (OH)	-5.44	17.16	5.33	224.5	2.70 x 10 ⁴	3332	
8-HGLY	8 (OH)	-13.01	13.47	0.88	2.1	1.28 x 10 ⁵	2239	

Figure S3. Transition structures (TS) in the deprotonated Genistein against •OOH for the HT mechanism.

Systems	T1 Diagnostic
	0.03365
	0.03619

 Table S6. T1 diagnostic for transition states involved H abstractions by •OOH radical.