Supporting information

Rational design of mimetic peptides based on aldo-ketoreductase enzyme as asymmetric organocatalyst in aldol reactions

Saadi Bayat ${ }^{1,2}$, Bimo Ario Tejo ${ }^{6}$, Abu Bakar Salleh ${ }^{1,3}$, Emilia Abd malek ${ }^{1,2}$, Normi M. Yahaya ${ }^{1,4}$ and Mohd Basyaruddin Abdul Rahman ${ }^{1,2,5 *}$
${ }^{1}$ Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
${ }^{2}$ Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
${ }^{3}$ Department of Biochemistry; Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
${ }^{4}$ Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
${ }^{5}$ Structural and Synthetic Biology Research Centre, Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
${ }^{6}$ Center for Infectious Diseases Research Surya University, Jl. Scientia, Boulevard Blok U/7, Gading Serpong, Tangerang 15810, Banten, Indonesia

*Corresponding Author: *basya@upm.edu.my , Tel: +60389466798, +603 89435380

General

All chemicals were purchased and used without further purification. Recombinant Human AKR1A1 aldehyde reductase (Homo sapiens, freeze-dried CFE, in 20 mM sodium phosphate, cat.no. $=$ ProE0601) was purchased from Prozomix company to employ as a control promiscuous asymmetry biocatalyst in the aldol reaction. Analytical thin layer chromatography (TLC) was performed using Merck $60 \mathrm{~F}_{254}$ precoated silica gel plate (0.2 mm thickness). Flash chromatography was performed using Merck silica gel 60 (70-230 mesh). Fourier transforms infrared spectroscopy (FTIR); Perkin Elmer Spectrum 100 was used for identification of functional groups. NMR data were recorded on 700

MHz (Bruker), 500 MHz (JEOL) for ${ }^{1} \mathrm{HNMR}$ and 127 MHz (Bruker) 100 MHz (JEOL JNM ECA) for ${ }^{13} \mathrm{C}$ NMR spectrometer. The relative and absolute configurations (dr) of the Aldol reactions were determined by comparison with ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Mass spectra (MS) were measured with a spectrometer (DIMS QP5050A SHIMADZU). Optical rotations were measured on a JASCO P2000 Polarimeter. Enantioselectivity were determined by HPLC (Waters 1525 Binary Pump and UVWater 2489) analysis employing a Daicel ChiralCel OD-H, and ChiralPak AD-H columns $(4.6 \mathrm{~mm} \times 250 \mathrm{~mm})$. CD spectra were measured on a JASCO J-810 automatic recording spectropolarimeter.

$>$ Experimental method

Characterizations of peptide 8aa

IR (neat) $v=3280,3103,2966,2902,1635,1546,1195,1139, \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H N M R}(700 \mathrm{MHz}, \delta=\mathrm{ppm}) ; \delta$ $=8.71(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{~s}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=8.17,1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=$ $7.45 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.19 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=6.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{bs}$, $1 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{t}, J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=15.48,5.78$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=15.50,8.90, \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.16,6.55 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~m}$,
$2 \mathrm{H}), 2,39(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 6 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.5(\mathrm{~m}, 2 \mathrm{H})$, $1.45(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=5.00 \mathrm{~Hz}, 12 \mathrm{H}), 0.83(\mathrm{~d}, J=6.23 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C N M R}\left(125.70 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, $\left.25^{\circ} \mathrm{C}\right) \delta=20.52,20.96,23.27,23.56,24.60,24.70,24.79,26.36,26.85,26.93,28.87,28.91,32.50$, $32.78,34.06,39.58,42.11,42.39,42.58,54.95,55.25,55.80,56.15,57.64,62.09,62.26,118.13$, $119.80,120.04,121.50,129.75,131.31,131.35,131.81,136.25,138.81,165.50,165.70,167.60,172.3$, 175.14, 175.33, 176.27, 176.57, 176.67, 177.10, 179.80. MS (Accurate Q-TOF LC/HRMS): $m / z(\%):$ $981.5887(100)[\mathrm{M}+\mathrm{H}]$.

Spectroscopic data of peptide PH16aa

IR (neat) $v=3262,3046,2925,2856,1624,1523,1170,1130, \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H N M R}(700 \mathrm{MHz}, \delta=\mathrm{ppm}) ; \delta$ $=8.48(\mathrm{~s}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}), 8.40(\mathrm{~d}, J=6.15 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=6.15 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=6.50 \mathrm{~Hz}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=6.50 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=6.55 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~m}, 2 \mathrm{H}), 7.97$ $(\mathrm{d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{bs}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.00 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{bs}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{bs}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=7.06 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 4 \mathrm{H}), 4.24$ $(\mathrm{m}, 3 \mathrm{H}), 4.17(\mathrm{dd}, J=14.75,5.70 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=5.00$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89$ (dd, $J=12,5.22 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.5,4.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{q}, J=9.25 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=5.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=6.54 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=15.00,8.00 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.11(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=13.50,8.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.74 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{t}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~m}, 11 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{t}, J=7.55 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 4 \mathrm{H}), 1.44$ $(\mathrm{m}, 4 \mathrm{H}), 1.38(\mathrm{~d}, J=7.00 \mathrm{~Hz}, 7 \mathrm{H}), 1.36(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.86 \mathrm{~Hz}, 7 \mathrm{H}), 0.90(\mathrm{~d}, J=7.50 \mathrm{~Hz}, 5 \mathrm{H}), 0.88(\mathrm{~d}, J=6.20 \mathrm{~Hz}, 12 \mathrm{H}), 0.85(\mathrm{~d}, J=7.16 \mathrm{~Hz}$, $4 \mathrm{H}), 0,82(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13}$ CNMR ($125.70 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$) $\delta=13.00,17.53,17.71,19.18,19.40,20.28,20.83,21.05,21.07$, $21.80,23.30,23.67,24.67,24.80,24.88,26.89,26.96,27.26,27.48,28.89,29.17,32.08,32.49,32.86$, $32.93,33.15,38.79,39.45,40.87,42.18,42.44,44.95,50.13,50.99,52.44,55.44,56.46,57.13,58.42$, $61.00,63.93,118.21,120.08,129.87,131.49,131.84,136.30,138.86,165.59,172.42,174.27,175.84$, 176.98.

MS (Accurate Q-TOF LC/HRMS): $m / z(\%): 1842.9947$ (100) [M+H] ${ }^{+}$

Spectroscopic data of peptide 8aa(z)

IR (neat) $v=3270,3153,2956,2922,1726,1655,1556,1205,1142, \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H N M R}(700 \mathrm{MHz}, \delta=$ $\mathrm{ppm}) ; ~ \delta=8.75(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=8.15,1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ $(\mathrm{d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.15 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{bs}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 4.41$
$(\mathrm{t}, J=7.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 3 \mathrm{H}), 4.02(\mathrm{t}, J=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $15.48,5.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=15.50,8.91, \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=14.12,6.65 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 4 \mathrm{H})$, $2.42(\mathrm{~m}, 2 \mathrm{H}), 2,32(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 6 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (m, 2H), $1.43(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=5.00 \mathrm{~Hz}, 12.00 \mathrm{H}), 0.81(\mathrm{~d}, J=6.20 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ CNMR (125.7 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}\right) \delta=18.29,19.78,21.63,22.15,22.77,23.55,24.31,24.36$, $26.39,26.65,27.91,28.15,28.17,30.62,31.03,31.55,32.21,38.18,41.29,41.69,47.57,53.59,54.03$, $54.54,54.66,55.86,57.45,61.06,61,92,67.44,118.73,128.08,128.82,129.09,129.58,129.72$, $130.38,131.39,134.87,138.10,138.58,169.99,173.93,174.33,174.39,174.90,175.19,176.44$.

MS (Accurate Q-TOF LC/HRMS): $m / z(\%): 1115.6262(100)[\mathrm{M}+\mathrm{H}]^{+}$

Spectroscopic data of PELFV-NH2 (5aa)

IR (neat) $v=3342,3125,3085,2975,2846,1665,1546,1187,1135, \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H N M R}(700 \mathrm{MHz}, \delta=$ $\mathrm{ppm}) ; ~ \delta=8.74(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.60 \mathrm{~Hz}), 7.16(\mathrm{bs}, 1 \mathrm{H}), 6.90(\mathrm{bs}, 1 \mathrm{H})$, $4.30(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=13.52$, $7.50 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.16$ (dd, $J=6.25,0.50 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.50 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{~d}, J=6.72 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.23 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ CNMR ($125.7 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$) $\delta=18.51,19.78,22.17,23.42,25.00,25.30,25.80,28.55,31.07$, $31.60,32.05,38.62,42.31,47.55,52.35,53.16,54.46,56.04,59.71,61.01,64.81,66.95,127.85$, $129.54,130.43,138.32,169.80,173, .04,173.24,174.25,174.82,175.71,176.71$.

> General procedure for aldol reaction catalyzed by peptide

To $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ was added the corresponding catalyst ($0.005 \mathrm{mmol}, 5 \mathrm{mg}$), NMM (1 drop), and $i \operatorname{PrOH}(0.4 \mathrm{~mL}$,). The reaction mixture was stirred for 20 min followed by addition of the corresponding ketone ($0.168 \mathrm{mmol}, 1.2 \mathrm{eq}$). Then, the requisite aldehyde ($0.14 \mathrm{mmol}, 1 \mathrm{eq}$) was added to the reaction mixture. The resulting mixture was stirred at RT for 24 h . The reaction was monitored by TLC. Then treated with saturated ammonium chloride solution and the mixture was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. After NMR analysis to determine diastereomeric ratio, the residue was purified by flash column chromatography with hexanes/ethyl acetate (3:1) to afford the aldol products that were subjected to chiral HPLC analysis to determine enantiomeric excesses.

1- (R)-2-((S)-hydroxy(4-nitrophenyl)methyl) cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$, yield: 97%; The ee was determined by chiral HPLC (Chiral OD-H, $i \operatorname{PrOH} / \mathrm{n}$-hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: tmajor $=35.488 \mathrm{~min}$, tminor $=47.551 \mathrm{~min}$, ee $=97 \%, \mathrm{dr}=$ 90:10 (anti/syn).
FT-IR $\left(\mathrm{cm}^{-1}\right): 3510,2938,2901,2875,1686,1603,1507,1339 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $=1.26-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.37(\mathrm{td}, J=$ $13.75 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}$, $J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.62,27.59,30.69,42.62,57.12,73.74,123.40,123.52,126.56$, 127.86, 147.49, 148.30, 214.78
DEPT^{90} and 135 deg show four methylene groups (negative) and 6 methine groups (positive) which in the aromatic area two of CH groups have been overlapped together.
MS (DI) $=249$

2 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone

FT-IR (cm^{-1}),: $3508,3112,2935,2862,1692,1510,1338 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 1.73-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.89-$ $1.94(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.55(\mathrm{t}, J=6.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{td}, J=12.2 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})-2.91-2.94(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=9.2$ Hz, 1H), 7.4, (m, 5H)
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=23.86,28.4,28.92,40.29,60.48,74.54,128.32,128.47,129.2,130.19,130.29,133.78$, 215.18

$$
\mathrm{MS}(\mathrm{DI})=204
$$

3 2-(XXXydroxyl(4-nitrophenyl)methyl)cycloheptanone

2-(hydroxy(4-nitrophenyl)methyl)cycloheptanone

FT-IR $\left(\mathrm{cm}^{-1}\right),: 3100,2928,2860,1704,1603,1346,1117 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 1.20-1.45 (m, 4H), 1.65-1.92(m, 4H), 2.40-2.59(m, 2H), $2.98(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=6.9, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$.

4 S)-2-((S)-(2-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$, yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}-\mathrm{hexane}$ $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): tmajor $=13.055 \mathrm{~min}$, tminor $=15.552 \mathrm{~min}$, ee $=99.9 \%, \mathrm{dr}=$ 96:4 (anti/syn).

FT-IR (cm^{-1}): 3437, 2940, 2864, 1696, 1438, 1030, 756; 1H NMR (500 MHz, CDCl3): $\delta(\mathrm{ppm})=1.54-$ $1.64(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.81(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.35(\mathrm{td}, J=13.75 \mathrm{~Hz}, J=6.85 \mathrm{~Hz} 1 \mathrm{H})$, 2.43-2.46 (m, 1H), 2.63-2.68 (m, 1H), $5.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31$ (m, 2H), 7.52 (dd, $J=8, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.89,27.79,30.37,42.71,57.56,70.43,127.23,128.20,128.73$, 129.19, 132.94, 139.02, 215.32.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

$$
\operatorname{MS}(D I)=238
$$

5 (S)-2-((S)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $\left(4.6 \times 250 \mathrm{~mm}\right.$). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: tmajor $=13.831 \mathrm{~min}$, tminor $=17.452 \mathrm{~min}$, ee $=96.54 \%$, dr $=93: 7$ (anti/syn).

FT-IR $\left(\mathrm{cm}^{-1}\right): 2828,2663,2552,1678,1418,1284,926 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.25-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.63(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.37$ $(\mathrm{td}, J=13.7 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.55(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=24.67,27.71,30.74,42.64,57.30,74.15,128.48,128.54,129.26$, 130.19, 133.79, 171.97, 215.44.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).
$\mathrm{MS}(\mathrm{DI})=238$

6 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$, yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, $i \operatorname{PrOH} /$ hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}):$ tmajor $=18.801 \mathrm{~min}$, tminor $=26.323 \mathrm{~min}$, ee $=86 \%, \mathrm{dr}=99: 1$ (anti/syn).

FT-IR (cm-1): 3425, 3356, 2932, 2860, 1688, 1481, 1053, 824; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $=1.61-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.43(\mathrm{~m}, 1 \mathrm{H}), 4.75$ (d, $J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) 7.41(\mathrm{dd}, J=2.3, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=4.6, J=8$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=20.25,22.24,26.66,38.94,55.97,74.43,110.82,118.71,126.19$, 127.17, 132.11, 148.30, 219.91.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).
$\operatorname{MS}(D I)=229$

7 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$. yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: tmajor $=11.508 \mathrm{~min}$, tminor $=16.098 \mathrm{~min}$, ee $=88.8 \%, \mathrm{dr}=$ 98: 2 (anti/syn).

FT-IR $\left(\mathrm{cm}^{-1}\right)$: 3411, 2942, 2866, 1703, 1524, 1349; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.57-$ $1.75(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.34(\mathrm{td}, \mathrm{J}=13.75 \mathrm{~Hz}, \mathrm{~J}=5.75 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.93,27.72,31.06,42.78,57.24,69.70,124.04,128.36,128.95$, 133.05, 136.54, 148.67, 214.96.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

$$
\operatorname{MS}(D I)=249
$$

8 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$. yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, $i \mathrm{PrOH} / \mathrm{n}$-hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: tmajor $=22.316 \mathrm{~min}$, tminor $=29.783 \mathrm{~min}$, ee $=85.8 \%, \mathrm{dr}=$ 90: 10 (anti/syn).

FT-IR (cm-1): 2941, 2833, 2659, 2550, 1678, 1415, 1281, $925 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $=1.24-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.37(\mathrm{td}, J=13.7$ $\mathrm{Hz}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 1 \mathrm{H}), 2,51-2.57(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, ~ J=8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=24.68,27.69,30.73,42.64,57.29,74.14,121.70,127.50,128.71$, 131.24, 131.47, 139.95, 215.30.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).
$\operatorname{MS}(D I)=282$

9 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr . The chromatography purified aldol products were then examined by HPLC to determine their ee. OD-H ChiralCel Column $(4.6 \times 250 \mathrm{~mm})$. Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, $i \operatorname{PrOH} / \mathrm{n}-\mathrm{hexane}$ $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: tmajor $=13.407 \mathrm{~min}$, tminor $=15.682 \mathrm{~min}$, ee $=79.5 \%, \mathrm{dr}=$ 92: 8 (anti/syn).
FT-IR $\left(\mathrm{cm}^{-1}\right): 3065,2828,2663,2552,1678,1418,1285,928 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 1.25-1.31 (m, 2H), 1.49-1.53 (m, 2H), 1.55-1.64 (m, 1H), 1.73-1.75 (m, 1H), 2.00-2.06 (m, 1H), 2.26$2.32(\mathrm{td}, J=5.7 \mathrm{~Hz}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.55(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=24.70,27.69,30.74,42.66,57.24,74.26,125.58,125.32,127.35$, 129.94, 130.20, 144.93, 215.12.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive).

$$
\operatorname{MS}(D I)=272
$$

10 (R)-2-((S)-hydroxy(pyridin-4-yl)methyl)cyclohexanone

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column $(4.6 \times 250 \mathrm{~mm})$. Yield: 95%; The ee was determined by chiral HPLC (Chiral AD-H, $i \operatorname{PrOH} / \mathrm{n}$-hexane $5 / 95$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): tmajor $=12.228 \mathrm{~min}$, tminor $=16.668 \mathrm{~min}$, ee $=98 \%, \mathrm{dr}=$ 99:1 (anti/syn).
FT-IR $\left(\mathrm{cm}^{-1}\right): 3100,2928,2860,1704,1603,1413,1117 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 1.66-1.71 (m, 2H), 1.93-2.02 (m, 2H), 2.09-2.16 (m, 1H), 2.3-2.40 (m, 1H), $4.38(\mathrm{bs}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz} 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.55 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=4.55 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 20.38,22.14,39.01,55.67,69.50,120.83,129.06,153.18$, 219.51.
DEPT^{90} and 135 deg demonstrate four methylene groups (negative) and 6 methine groups (positive two overlapped). $\operatorname{MS}(D I)=272$

11 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column
$(4.6 \times 250 \mathrm{~mm})$. The ee was determined by chiral HPLC (Chiral AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $10 / 90$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$.

FT-IR $\left(\mathrm{cm}^{-1}\right): 3430,3068,2922,1700,1414,1281 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=2.14(\mathrm{~s}$, $3 \mathrm{H}), 2.78(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.11$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=30.61,51.48,68.50,123.66,126.36,128.36,130.01,147.4,150.04$, 208.44.
DEPT^{90} and 135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

12 (S)-4-(4-chlorophenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column $(4.6 \times 250 \mathrm{~mm})$. The ee was determined by chiral HPLC (Chiral AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $10 / 90$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$.

FT-IR $\left(\mathrm{cm}^{-1}\right): 3425,3077,2919,1703,1515,1340 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=2.17(\mathrm{~s}$, $3 \mathrm{H}), 2.78(\mathrm{~d}, ~ J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{bs}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.74,51.76,69.15,127.00,128.65,133.32,141.14,208.93$.
DEPT^{90} and 135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

13 (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column
$(4.6 \times 250 \mathrm{~mm})$. The ee was determined by chiral HPLC (Chiral AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $10 / 90$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$.
FT-IR $\left(\mathrm{cm}^{-1}\right): 3420,3078,2914,1705,1515,1341 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=2.17(\mathrm{~s}$, $3 \mathrm{H}), 2.81(\mathrm{~d}, J=4.55 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{bs}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=7.4,3.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.65,51.45,68.80,125.45,125.87,129.61,129.94,146.94,208.79$.
DEPT^{90} and 135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr . The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column $\left(4.6 \times 250 \mathrm{~mm}\right.$). The ee was determined by chiral HPLC (Chiral AD-H, ${ }^{i} \operatorname{PrOH} /$ n-hexane $5 / 95$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$)
FT-IR $\left(\mathrm{cm}^{-1}\right): 3418,3077,2922,1706,1520,1344 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.70(\mathrm{dd}, J=17.7,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{bs}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=9.15,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.64(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.41,51.04,65.57,124.41,128.15,128.25,133.80,138.37,147.11$, 208.80.
DEPT^{90} and 135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

15 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ${ }^{1} \mathrm{H}$ NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their ee. AD-H ChiralPak Column $(4.6 \times 250 \mathrm{~mm})$. The ee was determined by chiral HPLC (Chiral AD-H, ${ }^{i} \mathrm{PrOH} / \mathrm{n}$-hexane $10 / 90$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$.
FT-IR $\left(\mathrm{cm}^{-1}\right): 3418,2921,2855,1705,1490,1352 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.18(\mathrm{~s}$, $3 \mathrm{H}), 2.81(\mathrm{~d}, J=4.55 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{bs}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=7.4,3.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.15(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.65,51.45,68.80,123.68,126.36,147.21,150.01,208.47$.
DEPT^{90} and 135 deg demonstrate one methylene groups (negative) and five methine groups (positive).

 X: parts per Million : 13C

HPLC of corresponding aldol compounds Catalyzed by 8aa taken by chiral

 column

(R)-2-((S)-hydroxy(4-methoxyphenyl)methyl)cyclohexanone cat. 8aa

1) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.8aa(z)

2) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.5aa

3) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat. 3 aa

> Aldol reaction Catalyzed by Fmoc-3aa-Resin

	S A M PLE		I N F O R M A T I O N
Sample Name:	4Nitro+cyhex(Fmoc-K.L.H-Resin)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/9/2012 4:55:38 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	11	Date Processed:	$11 / 9 / 2012$ 5:47:50 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	60.00 Minutes	Sample Set Name:	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	16.140	673921	6.00	25616	8.00
2	17.845	633131	5.64	23222	7.25
3	19.118	4813702	42.84	146662	45.79
4	24.133	5114696	45.52	124758	38.96

SAMPLE INFORMATION			
Sample Name:	4NitroBen+acetone	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	4/12/2013 11:20:31 AM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	3	Date Processed:	4/12/2013 12:08:00 PM MYT
Injection Volume:	0.00 ul	Channel Name:	W2489 ChA
Run Time:	60.00 Minutes	Sample Set Name:	

SAMPLE INFORMATION			
Sample Name:	2Nitrobenz +acetone(8aa)ADH	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	3/29/2013 10:12:32 AM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	2	Date Processed:	3/29/2013 12:25:52 PM MYT
Injection Volume:	0.00 ul	Channel Name:	W2489 ChA
Run Time:	60.00 Minutes	Sample Set Name:	

SAMPLE INFORMATION

Sample Name:	4CF3Ben+acetone	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	4/1/2013 12:30:28 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	5	Date Processed:	$4 / 1 / 2013$ 5:17:38 PM MYT
Injection Volume:	0.00 ul	Channel Name:	W2489 ChA
Run Time:	60.00 Minutes	Sample Set Name:	

4) Octapeptide purity:

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH2

Octapeptide Mass:
$[\alpha]^{20}{ }_{\mathrm{Na} 589}=+2.86(\mathrm{c}=5 \mathrm{mg} / 25 \mathrm{ml} \mathrm{H} \mathrm{H} \mathrm{O})$

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH2

Theory Mol. Wt. calculated by Chemoffice software:

$$
\mathrm{C}_{48} \mathrm{H}_{76} \mathrm{~N}_{12} \mathrm{O}_{10}
$$

Exact Mass: 980.58

Mol. Wt.: 981.19
m/e: 980.58 (100.0\%), 981.58 (56.7\%), 982.59 (13.9\%), 982.58 (4.4\%), 983.59 (3.5\%)

And experimental LC- Mass:

Integration Peak List

Peak	Start	RT	End	Height	Area	Area \%
1	8.302	8.447	9.845	16515438	793998057	100

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund
327.8683	3	3069294
328.0218	3	201133
328.2025	3	1918582
328.5367	3	680737
328.8709	3	168530
491.2986	2	1749495
491.8	2	1076452
492.3018	2	336858
981.5887	1	290675
982.5915	1	172135

2- Aldol reaction catalyzed by PE-16aa

1-1 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone Catalyzed by PE-16aa

	S A M P L E	I N F O R M A T I O N	
Sample Name:	4.NitroBe+Cyhex	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	8/30/2012 2:04:55 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	9	Date Processed:	$9 / 11 / 2012$ 10:22:37 AM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	50.10 Minutes	Sample Set Name:	

1-2 (S)-2-((S)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	4Cl-benz+Cyhex	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	7/11/2012 1:48:35 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	5	Date Processed:	7/27/2012 5:48:53 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	50.00 Minutes	Sample Set Name:	

1-3 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

1-4 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

SAMPLE			
Sample Name:	2.NitroBenz+Cyhex	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/11/2012 4:37:25 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	5	Date Processed:	9/12/2012 12:59:33 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	50.00 Minutes	Sample Set Name:	

1-5 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl) cyclohexanone

	S A M PLE	I N F O R M A T I O N	
Sample Name:	4Brbenz+Cyhex	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	$8 / 30 / 2012$ 11:52:41 AM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	5	Date Processed:	$8 / 30 / 2012$ 1:08:58 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	45.00 Minutes	Sample Set Name:	

1-6 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

	S A M PLE		I N F O R M A T I O N
Sample Name:	p.CF3Ben+Cyhex		
Sample Type:	Unknown	Acquired By:	Breeze
Vial:	1	Date Acquired:	10/16/2012 10:44:26 AM MYT
Injection \#:	2	Acq. Method:	Saadi
Injection Volume:	10.00 ul	Date Processed:	10/16/2012 3:03:42 PM MYT
Run Time:	30.00 Minutes	Channel Name:	W2489 ChA
		Sample Set Name:	

2-1 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	4Nitro.Ben-Cyhex	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	7/17/2012 2:21:18 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	2	Date Processed:	7/17/2012 3:15:08 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	35.00 Minutes	Sample Set Name:	

2-2 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone (in 1\%SDS/iPrOH)

2-3 (S)-2-((S)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	4CI.Ben-Cyhex(P.H-16aa,aq)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/12/2012 4:16:29 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	7	Date Processed:	10/15/2012 2:52:05 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	30.00 Minutes	Sample Set Name:	

2-4 (S)-2-((S)-(2-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	2-Clbenz+Cyhex(P.H-16aa)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/17/2012 2:31:46 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	3	Date Processed:	10/17/2012 2:53:44 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	20.00 Minutes	Sample Set Name:	

2-5 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

SAMPLE INFORMATION			
Sample Name:	4CN.Ben-Cyhex(P.H-16aa,aq)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/12/2012 5:29:09 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	9	Date Processed:	10/15/2012 2:55:34 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	40.00 Minutes	Sample Set Name:	

2-6 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

	SAMPLE		I N F O R M A T I O N
Sample Name:	2Nitro.Ben-Cyhex(P.H-16aa,aq)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/15/2012 4:26:01 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	6	Date Processed:	10/15/2012 4:55:48 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.00 Minutes	Sample Set Name:	

2-7 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl) cyclohexanone

SAMPLE INFORMATION

Sample Name:	4Br.Ben-Cyhex(P.H-16aa,aq)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/12/2012 3:29:47 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	4	Date Processed:	$10 / 15 / 2012$ 2:48:10 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	17.00 Minutes	Sample Set Name:	

2-8 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	4-CF3Benz+Cyhex(P.H-16aa,aq)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/13/2012 1:18:26 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	7	Date Processed:	9/13/2012 2:17:05 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	50.00 Minutes	Sample Set Name:	

2-9 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone

SAMPLE INFORMATION			
Sample Name:	Benz+Cyhex(P.H-16aa)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/18/2012 12:20:42 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	4	Date Processed:	10/18/2012 1:10:34 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	17.00 Minutes	Sample Set Name:	

2-10 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

	S A M P L E		I N F O R M A T I O N
Sample Name:	4NitroBen+acetone (PH16aa)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	4/15/2013 10:12:28 AM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	1	Date Processed:	4/15/2013 11:43:59 AM MYT
Injection Volume:	0.00 ul	Channel Name:	W2489 ChA
Run Time:	60.00 Minutes	Sample Set Name:	

2-11 (S)-4-(4-chlorophenyl)-4-hydroxybutan-2-one

2-12 (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

2-13 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one

2-14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one

SAMPLE INFORMATION			
Sample Name:	P-H-16aa (0.5mmol/gr resin)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/10/2012 4:03:07 PM MYT
Vial:	1	Acq. Method:	Saadi RP
Injection \#:	4	Date Processed:	9/18/2012 12:39:52 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	70.00 Minutes	Sample Set Name:	

> LC-Mass spectra of PH16aa

FT-IR and CD spectrum of PH16aa

> Characterization of PE16aa

- HPLC of PE16aa

UPM
Project Name: Saadi RP.

Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	Pro-Glu-16AA. HPLC	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	7/5/2012 4:28:55 PM MYT
Vial:	1	Acq. Method:	Saadi RP
Injection \#:	2	Date Processed:	9/18/2012 12:28:44 PM MYT
Injection Volume:	10.00 ul	Channel Name:	W2489 ChB
Run Time:	90.00 Minutes	Sample Set Name:	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	16.308	100019	100.00	8391	100.00

- Spectroscopes data of PE-16aa

HPLC analysis of 5aa

SAMPLE			
Sample Name:	PELFV.NH2	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	2/6/2013 2:44:03 PM MYT
Vial:	1	Acq. Method:	Saadi
Injection \#:	2	Date Processed:	2/7/2013 1:27:59 PM MYT
Injection Volume:	20.00 ul	Channel Name:	W2489 ChA
Run Time:	66.00 Minutes	Sample Set Name:	

HPLC analysis of 8aa(z)

UPM
Project Name: Saadi
Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	8aa (Lys-Z)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	2/5/2013 4:58:26 PM MYT
Vial:	1	Acq. Method:	Test
Injection \#:	18	Date Processed:	2/5/2013 5:18:08 PM MYT
Injection Volume:	0.00 ul	Channel Name:	W2489 ChA
Run Time:	20.00 Minutes	Sample Set Name:	

