Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting information

Rational design of mimetic peptides based on aldo-ketoreductase enzyme as asymmetric organocatalyst in aldol reactions

Saadi Bayat^{1,2}, Bimo Ario Tejo⁶, Abu Bakar Salleh^{1,3}, Emilia Abd malek^{1,2}, Normi M. Yahaya^{,1,4} and Mohd Basyaruddin Abdul Rahman^{1,2,5*}

¹ Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
²Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
³Department of Biochemistry; Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
⁴Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
⁵Structural and Synthetic Biology Research Centre, Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
⁶Center for Infectious Diseases Research Surya University, Jl. Scientia, Boulevard Blok U/7, Gading Serpong, Tangerang 15810, Banten, Indonesia

*Corresponding Author: <u>*basya@upm.edu.my</u>, Tel: +60389466798, +603 8943 5380

General

All chemicals were purchased and used without further purification. Recombinant Human AKR1A1 aldehyde reductase (Homo sapiens, freeze-dried CFE, in 20 mM sodium phosphate, cat.no. = Pro-E0601) was purchased from Prozomix company to employ as a control promiscuous asymmetry biocatalyst in the aldol reaction. Analytical thin layer chromatography (TLC) was performed using Merck 60 F_{254} precoated silica gel plate (0.2 mm thickness). Flash chromatography was performed using Merck silica gel 60 (70-230 mesh). Fourier transforms infrared spectroscopy (FTIR); Perkin Elmer Spectrum 100 was used for identification of functional groups. NMR data were recorded on 700

MHz (Bruker), 500 MHz (JEOL) for ¹HNMR and 127 MHz (Bruker) 100 MHz (JEOL JNM ECA) for ¹³C NMR spectrometer. The relative and absolute configurations (dr) of the Aldol reactions were determined by comparison with ¹H NMR spectroscopic analysis. Mass spectra (MS) were measured with a spectrometer (DIMS QP5050A SHIMADZU). Optical rotations were measured on a JASCO P-2000 Polarimeter. Enantioselectivity were determined by HPLC (Waters 1525 Binary Pump and UV-Water 2489) analysis employing a Daicel ChiralCel OD-H, and ChiralPak AD-H columns (4.6mm×250mm). CD spectra were measured on a JASCO J-810 automatic recording spectropolarimeter.

Experimental method

Characterizations of peptide 8aa

IR (neat) v = 3280, 3103, 2966, 2902, 1635, 1546, 1195, 1139, cm⁻¹; ¹**HNMR** (700 MHz, δ = ppm); δ = 8.71 (d, *J* = 7.09 Hz, 1H), 8.6 (s, 2H), 8.48 (d, *J* = 8.17, 1H), 8.33 (d, *J* = 7.0 Hz, 1H), 8.19 (d, *J* = 7.45 Hz, 1H), 8.28 (d, *J* = 7.19 Hz, 1H), 8.26 (d, *J* = 6.84 Hz, 1H), 7.97 (d, *J* = 7.89 Hz, 1H), 7.53 (bs, 1H), 7.33 (m, 3H), 7.29 (m, 2H), 7.23 (d, *J* = 7.70 Hz, 3H), 7.18 (s, 1H), 4.63 (m, 2H), 4.40 (t, *J* = 7.14 Hz, 1H), 4.33 (m, 2H), 4.25 (m, 3H), 4.02 (t, *J* = 7.50 Hz, 1H), 3.04 (m, 2H), 3.28 (dd, *J* = 15.48, 5.78 Hz, 1H), 3.16 (dd, *J* = 15.50, 8.90, Hz, 1H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (dd, *J* = 14.16, 6.55 Hz, 1H), 3.00 (m, 4H), 2.45 (m, 3H), 3.09 (m, 3H), 3.09 (m, 3H), 3.00 (m, 4H), 3.00 (m, 4H),

2H), 2,39 (m, 2H), 2.34 (m, 2H), 1.99 (m, 6H), 1.79 (m, 1H), 1.70 (m, 3H), 1.58 (m,1H), 1.5 (m, 2H), 1.45 (m, 2H), 0.89 (d, J = 5.00 Hz, 12 H), 0.83 (d, J = 6.23 Hz, 6H). ¹³CNMR (125.70 MHz, D₂O, 25°C) $\delta = 20.52$, 20.96, 23.27, 23.56, 24.60, 24.70, 24.79, 26.36, 26.85, 26.93, 28.87, 28.91, 32.50, 32.78, 34.06, 39.58, 42.11, 42.39, 42.58, 54.95, 55.25, 55.80, 56.15, 57.64, 62.09, 62.26, 118.13, 119.80, 120.04, 121.50, 129.75, 131.31, 131.35, 131.81, 136.25, 138.81, 165.50, 165.70, 167.60, 172.3, 175.14, 175.33, 176.27, 176.57, 176.67, 177.10, 179.80. **MS** (Accurate Q-TOF LC/HRMS): *m/z* (%): 981.5887 (100) [M+H].

Spectroscopic data of peptide PH16aa

IR (neat) v = 3262, 3046, 2925, 2856, 1624, 1523, 1170, 1130, cm⁻¹; ¹**HNMR** (700 MHz, δ = ppm); δ = 8.48 (s, 2H), 8.45 (s, 2H), 8.40 (d, *J* = 6.15 Hz, 1H), 8.38 (d, *J* = 6.15 Hz, 1H), 8.26 (d, *J* = 6.50 Hz, 1H), 8.20 (d, *J* = 6.50 Hz, 1H), 8.19 (d, *J* = 6.55 Hz, 1H), 8.15 (d, *J* = 7.55 Hz, 1H), 8.12 (m, 2H), 7.97 (d, *J* = 7.55 Hz, 1H), 7.89 (d, *J* = 7.29 Hz, 1H), 7.53 (bs, 1H), 7.32 (t, *J* = 7.15 Hz, 3H), 7.27 (d, *J* = 7.00 Hz, 2H), 7.26 (bs, 2H), 7.22 (m, 3H), 7.17 (bs, 1H), 4.41 (t, *J* = 7.06 Hz, 1H), 4.35 (m, 4H), 4.24 (m, 3H), 4.17 (dd, *J* = 14.75, 5.70 Hz, 1H), 4.13 (t, *J* = 7.50 Hz, 1H), 3.97 (m, 2H), 3.94 (d, *J* = 5.00 Hz, 2H), 3.89 (dd, *J* = 12, 5.22 Hz, 1H), 3.84 (dd, *J* = 11.5, 4.80 Hz, 1H), 3.18 (dd, *J* = 15.00, 8.00 Hz, 1H),

3.11 (m, 2H), 3.03 (dd, *J* = 13.50, 8.00 Hz, 1H), 2.99 (t, *J* = 7.74 Hz, 3H), 2.90 (t, *J* = 8.00 Hz, 1H), 2.43 (m, 1H), 2.58 (m, 3H), 1.99 (m, 11H), 1.79 (m, 2H), 1.69 (t, *J* = 7.55 Hz, 2H), 1.52 (m, 4H), 1.44 (m, 4H), 1.38 (d, *J* = 7.00 Hz, 7H), 1.36 (d, *J* = 7.02 Hz, 3H), 1.17 (m, 2H), 0.96 (d, *J* = 7.01 Hz, 3H), 0.91 (d, *J* = 6.86Hz, 7H), 0.90 (d, *J* = 7.50 Hz, 5H), 0.88 (d, *J* = 6.20 Hz, 12H), 0.85 (d, *J* = 7.16 Hz, 4H), 0.82 (m, 8H).

¹³CNMR (125.70 MHz, D₂O, 25°C) δ = 13.00, 17.53, 17.71, 19.18, 19.40, 20.28, 20.83, 21.05, 21.07, 21.80, 23.30, 23.67, 24.67, 24.80, 24.88, 26.89, 26.96, 27.26, 27.48, 28.89, 29.17, 32.08, 32.49, 32.86, 32.93, 33.15, 38.79, 39.45, 40.87, 42.18, 42.44, 44.95, 50.13, 50.99, 52.44, 55.44, 56.46, 57.13, 58.42, 61.00, 63.93, 118.21, 120.08, 129.87, 131.49, 131.84, 136.30, 138.86, 165.59, 172.42, 174.27, 175.84, 176.98.

MS (Accurate Q-TOF LC/HRMS): *m/z* (%): 1842.9947 (100) [M+H]⁺

Spectroscopic data of peptide 8aa(z)

IR (neat) v = 3270, 3153, 2956, 2922, 1726, 1655, 1556, 1205, 1142, cm⁻¹; ¹**HNMR** $(700 MHz, <math>\delta = ppm$); $\delta = 8.75$ (d, J = 7.02 Hz, 1H), 8.65 (s, 2H), 8.48 (d, J = 8.15, 1H), 8.35 (d, J = 7.02 Hz, 1H), 8.21 (d, J = 7.41 Hz, 1H), 8.28 (d, J = 7.15 Hz, 1H), 8.23 (d, J = 7.04 Hz, 1H), 7.93 (d, J = 7.81 Hz, 1H), 7.57 (bs, 1H), 7.32 (m, 4H), 7.29 (m, 2H), 7.23 (m, 5H), 7.16 (m, 1H), 5.06 (s, 2H), 4.63 (m, 2H), 4.41

(t, J = 7.12 Hz, 1H), 4.35 (m, 2H), 4.23 (m, 3H), 4.02 (t, J = 7.52 Hz, 1H), 3.08 (m, 2H), 3.27 (dd, J = 15.48, 5.78 Hz, 1H), 3.14 (dd, J = 15.50, 8.91,Hz, 1H), 3.10 (dd, J = 14.12, 6.65 Hz, 1H), 3.06 (m, 4H), 2.42 (m, 2H), 2.32 (m, 2H), 2.31 (m, 2H), 1.94 (m, 6H), 1.71 (m, 1H), 1.72 (m, 3H), 1.58 (m, 1H), 1.53 (m, 2H), 1.43 (m, 2H), 0.85 (d, J = 5.00 Hz, 12.00 H), 0.81 (d, J = 6.20 Hz, 6H).

¹³**CNMR** (125.7 MHz, CD₃OD, 25°C) δ = 18.29, 19.78, 21.63, 22.15, 22.77, 23.55, 24.31, 24.36, 26.39, 26.65, 27.91, 28.15, 28.17, 30.62, 31.03, 31.55, 32.21,38.18, 41.29, 41.69, 47.57, 53.59, 54.03, 54.54, 54.66, 55.86, 57.45, 61.06, 61,92, 67.44, 118.73, 128.08, 128.82, 129.09, 129.58, 129.72, 130.38, 131.39, 134.87, 138.10, 138.58, 169.99, 173.93, 174.33, 174.39, 174.90, 175.19, 176.44.

MS (Accurate Q-TOF LC/HRMS): *m/z* (%): 1115.6262 (100) [M+H]⁺

Spectroscopic data of PELFV-NH₂ (5aa)

IR (neat) v = 3342, 3125, 3085, 2975, 2846, 1665, 1546, 1187, 1135, cm⁻¹; ¹**HNMR** (700 MHz, $\delta = ppm$); $\delta = 8.74$ (s, 1H), 8.35 (d, J = 7.01 Hz, 1H), 8.33 (d, J = 7.50 Hz, 1H), 7.99 (d, J = 8.32 Hz, 1H), 7.35 (t, J = 7.50 Hz, 2H), 7.29 (t, J = 7.02 Hz, 1H), 7.25 (d, J = 7.60 Hz), 7.16 (bs, 1H), 6.90 (bs, 1H), 4.30 (m, 2H), 4.03 (t, J = 7.78 Hz, 2H), 3.70 (s, 1H), 3.41 (m, 3H), 3.06 (m, 3H), 3.06 (dd, J = 13.52, 7.50 Hz, 3H), 2.40 (m, 1H), 2.23 (m, 1H), 2.01 (m, 3H), 1.87 (m, 1H), 1.50 (m, 1H), 1.46 (m, 1H), 1.16 (dd, J = 6.25, 0.50 Hz, 2H), 0.89 (d, J = 6.50 Hz, 6H), 0.87 (d, J = 6.72 Hz, 3H), 0.83 (d, J = 6.23 Hz, 3H).

¹³**CNMR** (125.7 MHz, D₂O, 25°C) δ = 18.51, 19.78, 22.17, 23.42, 25.00, 25.30, 25.80, 28.55, 31.07, 31.60, 32.05, 38.62, 42.31, 47.55, 52.35, 53.16, 54.46, 56.04, 59.71, 61.01, 64.81, 66.95, 127.85, 129.54, 130.43, 138.32, 169.80, 173, 04, 173.24, 174.25, 174.82, 175.71, 176.71.

MS (Accurate Q-TOF LC/HRMS): *m/z* (%): 603.3515 (100) [M+H]⁺

General procedure for aldol reaction catalyzed by peptide

To H_2O (0.6 mL) was added the corresponding catalyst (0.005 mmol, 5 mg), NMM (1 drop), and *i*PrOH (0.4 mL,). The reaction mixture was stirred for 20 min followed by addition of the corresponding ketone (0.168 mmol, 1.2 eq). Then, the requisite aldehyde (0.14 mmol, 1 eq) was added to the reaction mixture. The resulting mixture was stirred at RT for 24 h. The reaction was monitored by TLC. Then treated with saturated ammonium chloride solution and the mixture was extracted with ethyl acetate (3×2mL). The combined organic extract was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. After NMR analysis to determine diastereomeric ratio, the residue was purified by flash column chromatography with hexanes/ethyl acetate (3:1) to afford the aldol products that were subjected to chiral HPLC analysis to determine enantiomeric excesses.

1- (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm), yield: 97%; The ee was determined by chiral HPLC (Chiral OD-H, *i*PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 35.488 min, tminor= 47.551 min, ee = 97%, dr = 90:10 (anti/syn).

FT-IR (cm⁻¹): 3510, 2938, 2901, 2875, 1686, 1603, 1507, 1339; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.26-1.35 (m, 1H), 1.44-1.65 (m, 4H), 1.77 (d, *J*= 13.7 Hz, 1H), 2.06-2.11 (m, 1H), 2.30-2.37 (td, *J*= 13.75Hz, *J* = 6.9 Hz, 1H), 2.54-2.62 (m, 1H), 4.83 (d, *J*= 8 Hz, 1H), 7.44 (d, *J* = 9.15 Hz, 2H), 8.15 (d, *J*= 9.15 Hz, 2H)

¹³C NMR (100 MHz, CDCl₃) δ = 24.62, 27.59, 30.69, 42.62, 57.12, 73.74, 123.40, 123.52, 126.56, 127.86, 147.49, 148.30, 214.78 DEPT^{90 and 135 deg} show four methylene groups (negative) and 6 methine groups (positive) which in the aromatic area two of CH groups have been overlapped together. MS (DI) = 249

2 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone

FT-IR (cm⁻¹),: 3508, 3112, 2935, 2862, 1692, 1510, 1338; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 1.73- 1.79 (m, 3H), 1.89- 1.94 (m, 3H), 2.51- 2.55 (t, *J* = 6.85 Hz, 2H), 2.83 (td, *J* = 12.2Hz, *J* = 5.4 Hz, 1H) - 2.91- 2.94 (m, 1H), 4.78 (d, *J* = 9.2 Hz, 1H), 7.4, (m, 5H)

¹³C NMR (100 MHz, CDCl₃) δ = 23.86, 28.4, 28.92, 40.29, 60.48, 74.54, 128.32, 128.47, 129.2, 130.19, 130.29, 133.78, 215.18

MS(DI) = 204

3 2-(XXXydroxyl(4-nitrophenyl)methyl)cycloheptanone

2-(hydroxy(4-nitrophenyl)methyl)cycloheptanone

FT-IR (cm⁻¹),: 3100, 2928, 2860, 1704, 1603, 1346, 1117; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.20- 1.45 (m, 4H), 1.65-1.92 (m, 4H), 2.40- 2.59 (m, 2H), 2.98 (m, 1H), 3.74 (d, *J* = 4.8 Hz, 1H), 4.92 (dd, *J* = 6.9, *J* = 5.2 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 2H), 8.21(d, *J* = 9.1Hz, 2H).

4 S)-2-((S)-(2-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm), yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ^{*i*}PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 13.055 min, tminor= 15.552 min, ee = 99.9%, dr = 96:4 (anti/syn).

FT-IR (cm⁻¹): 3437, 2940, 2864, 1696, 1438, 1030, 756; 1H NMR (500 MHz, CDCl3): δ (ppm) = 1.54-1.64 (m, 5H), 1.79-1.81 (m, 1H), 2.04-2.08 (m, 1H), 2.29-2.35 (td, *J* = 13.75 Hz, *J* = 6.85 Hz 1H), 2.43-2.46 (m, 1H), 2.63-2.68 (m, 1H), 5.33 (d, *J*= 8 Hz, 1H), 7.19 (dd, *J* = 8, *J* = 5.7 Hz, 1H), 7.27-7.31 (m, 2H), 7.52 (dd, *J* = 8, *J* = 2.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ = 24.89, 27.79, 30.37, 42.71, 57.56, 70.43, 127.23, 128.20, 128.73, 129.19, 132.94, 139.02, 215.32.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 238

5 (S)-2-((S)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ^{*i*}PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 13.831 min, tminor= 17.452 min, ee = 96.54 %, dr = 93:7 (anti/syn).

FT-IR (cm⁻¹): 2828, 2663, 2552, 1678, 1418, 1284, 926; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.25-1.27 (m, 2H), 1.52-1.55 (m, 2H), 1.56-1.60 (m, 1H), 1.60-1.63 (m, 1H), 2.07-2.08 (m, 1H), 2.31-2.37 (td, *J* = 13.7 Hz, *J* = 6.8 Hz, 1H), 2.46-2.53 (m, 1H), 2.54-2.55 (m, 1H), 4.76 (d, *J*= 9.15 Hz, 1H), 7.25 (d, *J* = 9.15 Hz, 2H), 7.32 (d, *J* = 9.15 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 24.67, 27.71, 30.74, 42.64, 57.30, 74.15, 128.48, 128.54, 129.26, 130.19, 133.79, 171.97, 215.44.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS (DI) = 238

6 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm), yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, *i*PrOH/hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 18.801 min, tminor= 26.323 min, ee = 86 %, dr = 99:1 (anti/syn).

FT-IR (cm-1): 3425, 3356, 2932, 2860, 1688, 1481, 1053, 824; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.61-1.71(m, 3H), 1.89-1.99 (m, 2H), 2.06-2.13 (m, 2H), 2.16-2.24 (m, 1H), 2.29-2.43 (m, 1H), 4.75 (d, *J*= 9.15 Hz, 1H), 5.31 (d, *J* = 2.3 Hz, 1H) 7.41 (dd, *J* = 2.3, *J* = 8 Hz, 2H), 7.58 (dd, *J* = 4.6, *J* = 8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 20.25, 22.24, 26.66, 38.94, 55.97, 74.43, 110.82, 118.71, 126.19, 127.17, 132.11, 148.30, 219.91.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 229

7 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm). yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, ^{*i*}PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 11.508 min, tminor= 16.098 min, ee = 88.8 %, dr = 98: 2 (anti/syn).

FT-IR (cm⁻¹): 3411, 2942, 2866, 1703, 1524, 1349; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.57-1.75(m, 5H), 1.80-1.83 (m, 1H), 2.04-2.09 (m, 1H), 2.27-2.34 (td, J = 13.75 Hz, J = 5.75 Hz, 1H), 2.40-2.43 (m, 1H), 5.42 (d, J = 6.85 Hz, 1H), 7.40 (t, J = 8 Hz, 1H), 7.60 (t, J = 8 Hz, 1H), 7.74 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃) δ = 24.93, 27.72, 31.06, 42.78, 57.24, 69.70, 124.04, 128.36, 128.95, 133.05, 136.54, 148.67, 214.96.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 249

8 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm). yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, *i*PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 22.316 min, tminor= 29.783 min, ee = 85.8 %, dr = 90: 10 (anti/syn).

FT-IR (cm-1): 2941, 2833, 2659, 2550, 1678, 1415, 1281, 925; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.24-1.32 (m, 1H), 1.49-1.70 (m, 4H), 1.77-1.85 (m, 1H), 2.06-2.11 (m, 1H), 2.31-2.37 (td, *J* = 13.7 Hz, *J* = 5.7 Hz, 1H), 2.43-2.48 (m, 1H), 2,51- 2.57 (m, 1H), 4.74 (d, *J* = 9.2 Hz, 1H), 7.19 (d, *J* = 8 Hz, 2H), 7.46 (d, *J* = 8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 24.68, 27.69, 30.73, 42.64, 57.29, 74.14, 121.70, 127.50, 128.71, 131.24, 131.47, 139.95, 215.30.

 $DEPT^{90 \text{ and } 135 \text{ deg}}$ demonstrate four methylene groups (negative) and 6 methine groups (positive). MS(DI) = 282

9 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. OD-H ChiralCel Column (4.6 ×250mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral OD-H, *i*PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 13.407 min, tminor= 15.682 min, ee = 79.5 %, dr = 92: 8 (anti/syn).

FT-IR (cm⁻¹): 3065, 2828, 2663, 2552, 1678, 1418, 1285, 928; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.25-1.31 (m, 2H), 1.49-1.53 (m, 2H), 1.55-1.64 (m, 1H), 1.73-1.75 (m, 1H), 2.00- 2.06 (m, 1H), 2.26-2.32 (td, J = 5.7 Hz, J = 13.7 Hz, 1H), 2.40-2.43 (m, 1H), 2.50-2.55 (m, 1H), 4.77 (d, J = 8 Hz, 1H), 7.37 (d, J = 8 Hz, 2H), 7.53 (d, J = 8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 24.70, 27.69, 30.74, 42.66, 57.24, 74.26, 125.58, 125.32, 127.35, 129.94, 130.20, 144.93, 215.12.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive).

MS(DI) = 272

10 (R)-2-((S)-hydroxy(pyridin-4-yl)methyl)cyclohexanone

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column (4.6 ×250mm). Yield: 95%; The ee was determined by chiral HPLC (Chiral AD-H, *i*PrOH/n-hexane 5/95, flow rate = 0.8 mL/min, λ = 254 nm): tmajor= 12.228 min, tminor= 16.668 min, ee = 98 %, dr = 99:1 (anti/syn).

FT-IR (cm⁻¹): 3100, 2928, 2860, 1704, 1603, 1413, 1117; ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.66-1.71 (m, 2H), 1.93- 2.02 (m, 2H), 2.09-2.16 (m, 1H), 2.3- 2.40 (m, 1H), 4.38 (bs, 1H), 5.29 (d, *J* = 2.3 Hz 1H), 7.28 (d, *J* = 4.55 Hz, 2H), 7.43 (d, *J* = 4.55 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) 20.38, 22.14, 39.01, 55.67, 69.50, 120.83, 129.06, 153.18, 219.51.

DEPT^{90 and 135 deg} demonstrate four methylene groups (negative) and 6 methine groups (positive two overlapped). MS(DI) = 272

11 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column

(4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, ^{*i*}PrOH/n-hexane 10/90, flow rate = 0.8 mL/min, λ = 254 nm).

FT-IR (cm⁻¹): 3430, 3068, 2922, 1700, 1414, 1281. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.14 (s, 3H), 2.78 (d, *J* = 5.7Hz, 2H), 3.96 (bs, 1H), 5.19 (dd, *J* = 6.9, 5.7 Hz, 1H), 7.46 (d, *J* = 8 Hz, 2H), 8.11 (d, *J* = 8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 30.61, 51.48, 68.50, 123.66, 126.36, 128.36, 130.01, 147.4, 150.04, 208.44.

DEPT⁹⁰ and ¹³⁵ deg demonstrate one methylene groups (negative) and five methine groups (positive).

12 (S)-4-(4-chlorophenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column (4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, ^{*i*}PrOH/n-hexane 10/90, flow rate = 0.5 mL/min, λ = 254 nm).

FT-IR (cm⁻¹): 3425, 3077, 2919, 1703, 1515, 1340. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.17(s, 3H), 2.78 (d, *J* = 4.6 Hz, 2H), 3.36 (bs, 1H), 5.10 (dd, *J* = 8.9, 3.7 Hz, 1H), 7.27-7.30 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 30.74, 51.76, 69.15, 127.00, 128.65, 133.32, 141.14, 208.93. DEPT^{90 and 135 deg} demonstrate one methylene groups (negative) and five methine groups (positive).

13 (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column

(4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, ^{*i*}PrOH/n-hexane 10/90, flow rate = 1 mL/min, λ = 254 nm).

FT-IR (cm⁻¹): 3420, 3078, 2914, 1705, 1515, 1341. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.17 (s, 3H), 2.81 (d, J = 4.55 Hz, 2H), 3.54 (bs, 1H), 5.18 (dd, J = 7.4, 3.45 Hz, 1H), 7.44 (d, J = 8 Hz, 2H), 7.57 (d, J = 9.15 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 30.65, 51.45, 68.80, 125.45, 125.87, 129.61, 129.94, 146.94, 208.79. DEPT⁹⁰ and ¹³⁵ deg demonstrate one methylene groups (negative) and five methine groups (positive).

14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column (4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, ^{*i*}PrOH/n-hexane 5/95, flow rate = 0.5 mL/min, λ = 254 nm)

FT-IR (cm⁻¹): 3418, 3077, 2922, 1706, 1520, 1344. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.21 (s, 3H), 2.70 (dd, *J* = 17.7, 10.3 Hz, 2H), 3.7 (bs, 1H), 5.65 (dd, *J* = 9.15, 2.3 Hz, 1H), 7.41 (d, *J* = 8 Hz, 2H), 7.64 (t, *J* = 8 Hz, 1H), 7.86 (d, *J* = 8 Hz, 1H), 7.93 (d, *J* = 8 Hz, 1H)

¹³C NMR (100 MHz, CDCl₃) δ = 30.41, 51.04, 65.57, 124.41, 128.15, 128.25, 133.80, 138.37, 147.11, 208.80.

DEPT⁹⁰ and ¹³⁵ deg demonstrate one methylene groups (negative) and five methine groups (positive).

15 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one

The resulting pure product was examined by ¹H NMR to determine the dr. The chromatography purified aldol products were then examined by HPLC to determine their *ee*. AD-H ChiralPak Column (4.6 ×250mm). The ee was determined by chiral HPLC (Chiral AD-H, ^{*i*}PrOH/n-hexane 10/90, flow rate = 1 mL/min, λ = 254 nm).

FT-IR (cm⁻¹): 3418, 2921, 2855, 1705, 1490, 1352. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.18 (s, 3H), 2.81 (d, *J* = 4.55 Hz, 2H), 3.69 (bs, 1H), 5.22 (dd, *J* = 7.4, 3.45 Hz, 1H), 7.49 (d, *J* = 8 Hz, 2H), 8.15(d, *J* = 9.15 Hz, 2H).

 13 C NMR (100 MHz, CDCl₃) δ = 30.65, 51.45, 68.80, 123.68, 126.36, 147.21, 150.01, 208.47.

DEPT^{90 and 135 deg} demonstrate one methylene groups (negative) and five methine groups (positive).

> NMR spectra of corresponding aldol compounds

HPLC of corresponding aldol compounds Catalyzed by 8aa taken by chiral column

> (R)-2-((S)-hydroxy(4-methoxyphenyl)methyl)cyclohexanone cat. 8aa

1	6.388	163	0.03	26	0.06
2	6.664	788	0.15	66	0.17
3	7.516	515357	97.00	38623	97.34
4	9.200	14995	2.82	963	2.43

1) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.8aa(z)

3) (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone catalyzed by cat.3aa

Aldol reaction Catalyzed by Fmoc-3aa-Resin

4) Octapeptide purity:

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH₂

Octapeptide Mass:

 $[\alpha]^{20}_{Na589} = +2.86 \text{ (c}= 5 \text{ mg}/25 \text{ml H}_2\text{O})$

Pro-Glu-Leu-Phe-Val-Lys-Leu-His-NH₂

Theory Mol. Wt. calculated by Chemoffice software:

 $C_{48}H_{76}N_{12}O_{10}$

Exact Mass: 980.58

Mol. Wt.: 981.19

m/e: 980.58 (100.0%), 981.58 (56.7%), 982.59 (13.9%), 982.58 (4.4%), 983.59 (3.5%)

And experimental LC- Mass:

Integration Peak List										
	Peak	Start	RT	End	Height	Area	Area %			
	1	8.302	8.447	9.845	16515438	793998057	100			

m/z	Z	Abund
327.8683	3	3069294
328.0218	3	201133
328.2025	3	1918582
328.5367	3	680737
328.8709	3	168530
491.2986	2	1749495
491.8	2	1076452
492.3018	2	336858
981.5887	1	290675
982.5915	1	172135

2- Aldol reaction catalyzed by PE-16aa

1-1 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone Catalyzed by PE-16aa

1-2 (*S*)-2-((*S*)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

1-3 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

1-4 (R)-2-((S)-hydroxy(2-nitrophenyl)methyl)cyclohexanone

1-5 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone

SAMPLE INFORMATION Sample Name: 4Brbenz+Cyhex Acquired By: Breeze Sample Type: Unknown Date Acquired: 8/30/2012 11:52:41 AM MYT Saadi Vial: 1 Acq. Method: Injection #: 5 Date Processed: 8/30/2012 1:08:58 PM MYT Injection Volume: 10.00 ul Channel Name: W2489 ChA Run Time: 45.00 Minutes Sample Set Name: 0.012 6.408 RT Area Height % % Area (µV*sec) Height (min) (µV) 9.619 1940 0.28 102 0.65 1 0.010-2 13.201 2.57 17550 518 3.31 3 16.408 520487 76.34 12477 79.86 0.008-4 21.247 141851 20.80 2527 16.18 ₹ 0.006-0.004 21.247 0.002 13.201 9.619 0.000 2.00 22.00 0.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 24.00 28.00 26.00 Minutes

1-6 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

2 - Aldol reaction catalyzed by PH-18aa

Samı Samı Vial: Inject Run	SAMPLESample Name:4Nitro.Ben-CyhexSample Type:UnknownVial:1Injection #:2Injection Volume:10.00 ulRun Time:35.00 Minutes							uired By: e Acquire . Method e Proces .nnel Nar .nple Set I	ed: : sed: me: Name:	Breeze 7/17/2012 2:21:18 PM MYT Saadi 7/17/2012 3:15:08 PM MYT W2489 ChA	
0.14 0.12 0.10 0.10		1 2 3 4	Peak Name syn1 syn2 anti1 anti2	RT (min) 17.657 19.322 22.316 29.783	Area (μV*sec) 2533 294002 5216769 399522	% Area 0.04 4.97 88.23 6.76	Height (µV) 108 10038 143461 8472	% Height 0.07 6.19 88.51 5.23	anti1 - 22.316-		
0.06 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00									2500 30.00 35		

2-2 (R)-2-((S)-hydroxy(4-nitrophenyl)methyl)cyclohexanone (in 1%SDS/^{*i*}PrOH)

2-3 (*S*)-2-((*S*)-(4-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

2-4 (*S*)-2-((*S*)-(2-chlorophenyl)(XXXydroxyl)methyl)cyclohexanone

2-5 2-[Hydroxy-(4-cyano-phenyl)-methyl]-cyclohexanone

2-7 (R)-2-((S)-(4-bromophenyl)(hydroxy)methyl)cyclohexanone

2-8 (R)-2-((S)-(4-(trifluoromethyl)phenyl)(hydroxy)methyl)cyclohexanone

2-9 (R)-2-((S)-hydroxy(phenyl)methyl)cyclohexanone

	OH O U											
SAMPLE INFORMATION												
	Sample Name:Benz+Cyhex(P.H-16aa)Sample Type:UnknownVial:1Injection #:4Injection Volume:10.00 ulRun Time:17.00 Minutes						aa)	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name:			Breeze 10/18/2012 12:20: Saadi 10/18/2012 1:10:3 W2489 ChB	42 PM MYT 4 PM MYT
	0.12			RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height		10.045	0	
	0.10		1	8.862	9266	0.34	792	0.48	-			
	-		2	9.938	9077	0.33	871	0.53				
	0.08-		3	10.845	2417273	87.67	146116	89.45				
AU	0.06		4	13.498	321765	11.67	15563	9.53				
	0.04											
	0.02										498	
	0.00								8.862	9.938	5	
	-0.02											
	0.0	00		2.00	4.0	0	6.00	8.00 M	inutes	10.00	12.00 14	.00 16.00

2-10 (S)-4-hydroxy-4-(4-nitrophenyl)butan-2-one

2-12 (S)-4-(4-(trifluoromethyl)phenyl)-4-hydroxybutan-2-one

2-13 (S)-4-(4-bromophenyl)-4-hydroxybutan-2-one

2-14 (S)-4-hydroxy-4-(2-nitrophenyl)butan-2-one

> HPLC of peptide (PH16aa)

			SAM	PLE	ΙN	IFOF	ΓΙΟΝ		
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	•:	P-H-16aa (0.5mmol/gr resin) Unknown 1 4 10.00 ul 70.00 Minutes				Acquired Date Acc Acq. Met Date Pro Channel Sample S	l By: quired: thod: ocessed: Name: Set Name:	Breeze 9/10/2012 4:03:07 PM MYT Saadi RP 9/18/2012 12:39:52 PM MYT W2489 ChB	
0.22								4	
0.20		RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height		31.85 85	
0.18	1	30.396	30716	1.14	4681	2.00			
0.16	2	31.854	2499062	92.91	203067	86.95			
							T		

> LC-Mass spectra of PH16aa

> FT-IR and CD spectrum of PH16aa

104

> FT-IR and CD spectrum of 16aa

Characterization of PE16aa

• HPLC of PE16aa

UPM

Project Name: Saadi RP. Reported by User: Breeze user (Breeze)

• Spectroscopes data of PE-16aa

107

Wavelenght (nm)

> HPLC analysis of 5aa

> HPLC analysis of 8aa(z)

4.00

6.00

8.00

Minutes

2.00

UPM

0.00-

0.00

Project Name: Saadi Reported by User: Breeze user (Breeze)

12.00

10.00

14.00

SAMPLE	INFORMATION
8aa (Lys-Z) Unknown 1 18 0.00 ul 20.00 Minutes	Acquired By:BreezeDate Acquired:2/5/2013 4:58:26 PM MYTAcq. Method:TestDate Processed:2/5/2013 5:18:08 PM MYTChannel Name:W2489 ChASample Set Name:
	RT (min) Area (μV*sec) % Area Height (μV) % Height 1 6.927 109134430 100.00 2656709 100.00
	SAMPLE 8aa (Lys-Z) Unknown 1 18 0.00 ul 20.00 Minutes