Supporting Informations:

Manuscript ID RA-ART-05-2014-004889. R1 entitled "Enhancing Thermoelectric Properties of p-type Mg_3Sb_2 - based Zintl Phase Compound by Pb Substitution in the Anionic Framework.

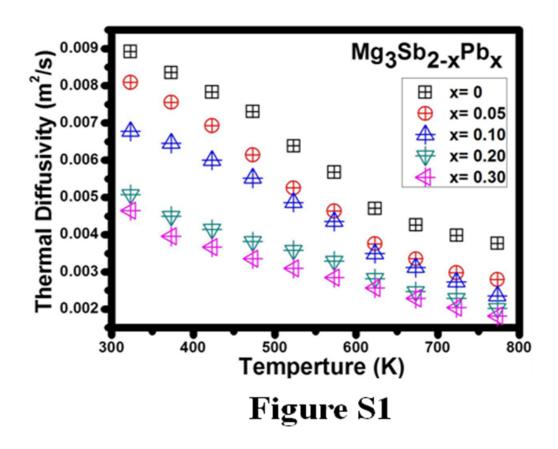


Figure S1: Temperature dependence of thermal diffusivity of $Mg_3Sb_{2-x}Pb_x$ ($0 \le x \le 0.3$).

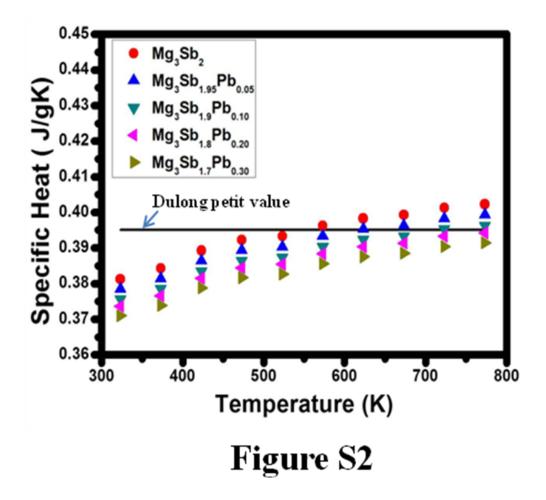


Figure S2: Temperature dependent value of specific heat (C_p) of $Mg_3Sb_{2-x}Pb_x$ $(0 \le x \le 0.3)$ samples with Dulong–Petit specific heat at constant volume.

Table T1. Density of all the samples with composition $Mg_3Sb_{2-x}Pb_x$ ($0 \le x \le 0.3$).

Compositions	Mg ₃ Sb ₂	Mg ₃ Sb _{1.95} Pb _{0.05}	Mg ₃ Sb _{1.9} Pb _{0.1}	Mg ₃ Sb _{1.8} Pb _{0.2}	Mg ₃ Sb _{1.7} Pb _{0.3}
Density (g/cm ³)	3.94	3.87	3.95	3.85	3.89

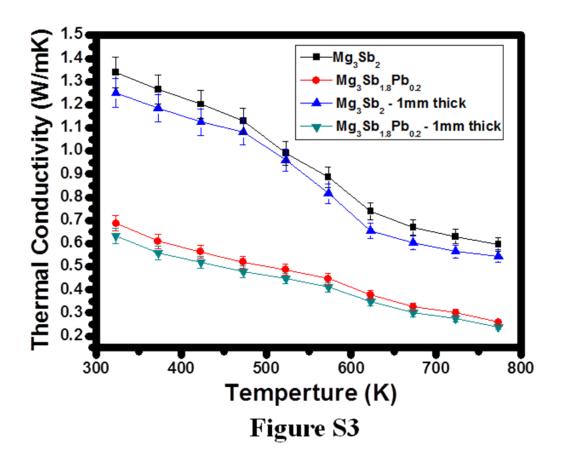


Figure S3: Comparison of temperature dependence of total thermal conductivity of Mg_3Sb_2 and $Mg_3Sb_{1.8}Pb_{0.2}$ measured on different thickness of 2.5 mm and 1.0 mm respectively.