Supporting Information

Some solids and molecular systems were investigated using DMol³/GGA-PW91-OBS ($\lambda = 3.0 \times 10^{-5}$, n = 8.0). The results are presented in Table S1~S2. They are compared with other theoretical data and available experimental findings. These survey results indicate that the proposed calculation parameter is acceptable.

Table S1 Calculated lattice constant a_0 for Al, Cu, and Fe crystals.								
		Al	Cu	Fe				
structure								
a_0 (Å)	calc.	4.042	3.645	2.846				
	expt.	4.049 ^a	3.614 ^b	2.866 ^c				
^{<i>a</i>} Ref. [1].								
^b Ref. [2].								
^c Ref. [3].								

Table S2 Equilibrium distances *d* and binding energies *E* for neon, argon, benzene dimers, and benzene@Cu(111).

	rare-gas		6	benzene dimers		h
		Ne ₂	Ar ₂	T-shaped	sandwich	benzene(<i>w</i>)Cu(111)
structure		d	d			
d (Å)	calc. expt.	3.010 3.094 ^a	3.812 3.761 ^b	5.078 4.960 ^d	4.025 (3.900 ^e)	3.250
<i>E</i> (eV)	calc.	0.013 (0.016 ^c)	0.012	0.123 (0.119 ^e)	0.084 (0.079 ^e)	0.520
	expt.	0.007^{a}	0.024^{b}			0.600 ^f
$a \mathbf{D} \mathbf{a} \mathbf{f} [\mathbf{A}]$						

^{*a*} Ref. [4].

^bRef. [5].

^c Ref. [6].

^d Ref. [7].

^e Ref. [8].

^fRef. [9, 10].

Fig. S Potential-pH equilibrium diagram for the system, copper-water, at 298 K.¹¹

References

- 1 S. Nenno and J. W. Kauffman, J. Phys. Soc. Jpn., 1960, 15, 220-226.
- 2 S. C. Ng, Brockhou.Bn and E. D. Hallman, *Mater. Res. Bull.*, 1967, **2**, 69-73.
- 3 S. Ohara, S. Komura and T. Takeda, J. Phys. Soc. Jpn., 1973, **34**, 1472-1476.
- 4 A. Wuest and F. Merkt, J. Chem. Phys., 2003, **118**, 8807-8812.
- 5 P. R. Herman, P. E. Larocque and B. P. Stoicheff, J. Chem. Phys., 1988, **89**, 4535-4549.
- 6 Q. Wu and W. T. Yang, J. Chem. Phys., 2002, 116, 515-524.
- 7 E. Arunan and H. S. Gutowsky, J. Chem. Phys., 1993, 98, 4294-4296.
- 8 M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2004, 108, 10200-10207.
- 9 P. S. Bagus, K. Hermann and C. Woll, J. Chem. Phys., 2005, 123.
- 10 A. Kokalj and S. Peljhan, *Langmuir*, 2010, **26**, 14582-14593.
- 11 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1975.