Supplementary Information

One-pot low-temperature synthesis of MnFe₂O₄-graphene composite for lithium ion battery applications

5 Huang Tang, Peibo Gao, An Xing, Shuang Tian, and Zhihao Bao *

Figure S1. Nitrogen adsorption-desorption isotherms of MnFe₂O₄-rGO.

10

Figure S2. Raman spectra of MnFe₂O₄ and MnFe₂O₄-rGO.

Figure S3. Thermogravimetric analyses of MnFe₂O₄ and MnFe₂O₄-rGO in air.

Table S1. Summary of synthesis process and electrochemical performance of transitional metal oxide-graphene nanocomponents 5 reported in the literature.

No	Materials	Precursor	Preparation method	Current density	Cycle	Capacity (mAh g ⁻¹)	Ref
				(A g ⁻¹)	number		
1	Mn ₃ O ₄ -graphene	Mn(Ac)2; purified	hydrothermal reaction at	1.6	10	390	1
		graphene oxide	180°C for 10 h				
2	Graphene-Wrapped	FeCl ₃ ·6H ₂ O; graphene	hydrolysis at 353 K for 24	0.7	100	580	2
	Fe ₃ O ₄	nanosheets	h; heat-treated at 873K for				
	-		4 h				
3	Fe ₃ O ₄ -graphene	FeCl ₃ ·6H ₂ O; purified	hydrothermal method at	1.6	5	474	3
		graphene oxide	180°C for 8 h				
4	Fe ₃ O ₄ -graphene	$Fe(NO_3)_3 \cdot 9H_2O;$	gas/liquid interfacial	1.0	10	410	4
		graphene sheets	reaction at 180 °C for 12 h				
5	Fe ₃ O ₄₋ reduced	$Fe_2(C_2O_4)_3 \cdot 5H_2O;$	hydrothermal reation at 180	1.0	100	403	5
	graphene oxide	purified graphene	°C for 10 h ; calcined at				
		oxide	500°C for 2 h				
6	MnFe ₂ O ₄ -graphene	MnCl ₂ and	hydrothermal reaction at	1.0	90	767	6
		FeCl ₃ ·6H ₂ O; purified	180 °C for 12 h for				
		graphene oxide	MnFe ₂ O ₄ , ultrasonication				
			for 1.5 h for nanocomposite				
7	MnFe ₂ O ₄ -graphene	FeCl ₃ ; mixture directly	low-temperature	1.0A	200	581.2	This
		from mixture by	coprecipitation at 90°C for				work
		Hummer's method	4 h				

1. H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui and H. Dai, Journal of the American Chemical Society, 2010, 132, 13978-13980.

2. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G. Q. Lu and H.-M. Cheng, Chemistry of Materials, 2010, 22, 5306-5313.

10 3. J. Su, M. Cao, L. Ren and C. Hu, The Journal of Physical Chemistry C, 2011, 115, 14469-14477.

4. P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang and H. Wang, Electrochimica Acta, 2010, 56, 834-840.

5. M. Zhang, M. Jia and Y. Jin, Applied Surface Science, 2012, 261, 298-305.

6. Y. Xiao, J. Zai, L. Tao, B. Li, Q. Han, C. Yu and X. Qian, Physical Chemistry Chemical Physics, 2013, 15, 3939-3945.

15

20

Figure. S4 Nyquist plots of MnFe₂O₄-rGO nanocomposite before and right after the first discharge process, respectively