Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Facile Synthesis of Nitrogen-doped Carbon Derived from Polydopamine Coated

Li₃V₂(PO₄)₃ as Cathode Materials for Lithium-Ion Batteries

Cunliang Zhang,^{a, b} Hongshen Li,^a Nie Ping,^a Gang Pang,^a Guiyin Xu,^a Xiaogang Zhang^{*a}

^a College of Material Science & Engineering, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China. E-mail: azhangxg@163.com.

^bShangqiu Polytechnic, Shangqiu, 476000, PR China

Synthesis of carbon coated Li₃V₂(PO₄)₃ (LVP/C)

In order to investigate the effects of nitrogen doped carbon coating accurately, a comparative experiment was carried out as follows [1]: Typically, 0.5g LVP was dispersed in a solution of 0.15g glucose dissolved in 30ml de-ionized water. The mixture was transferred into a 50 mL Teflon-lined stainless steel autoclave and then placed in an oven at 180 °C for 3 h. Finally the precipitate was collected, washed with de-ionized water and then annealed in a tube under N_2 atmosphere at 750 °C for 4 h after drying.

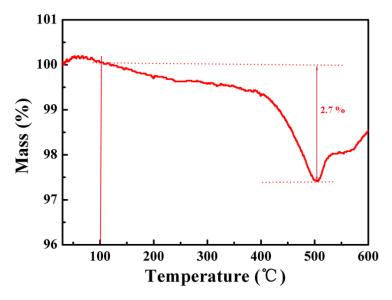


Fig. S1 TG curve of the LVP/C measured at 10 °C min⁻¹in air.

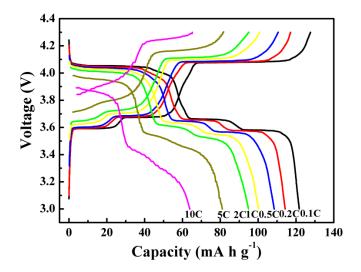
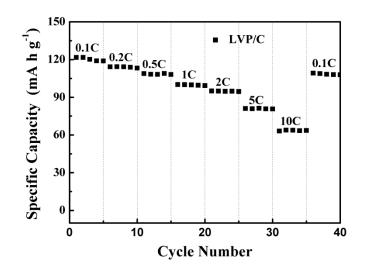



Fig.S2 Charge-discharge curves for LVP/C over a potential window of 3-4.3 V at

various rates.

Fig. S3 The rate performances of the LVP/C sample at different current rates over a potential window of 3-4.3 V.

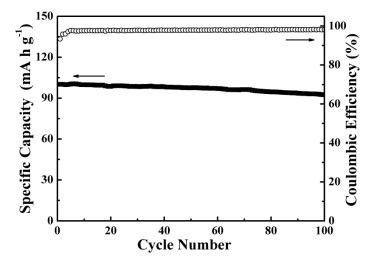


Fig.S4 The cyclability and Coulombic efficiency of the LVP/C sample at 1 C.

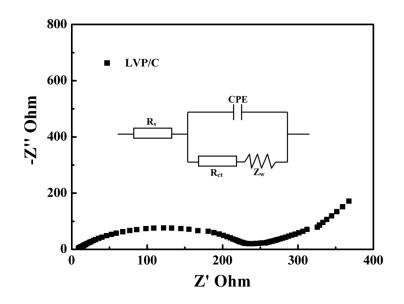


Fig.S5 EIS spectra for LVP/C with the frequency range of 100 kHz to 0.01Hz after five full cycles at 0.1 C.

Samples	$R_s(\Omega)$	$R_{ct}\left(\Omega ight)$
LVP/C	5.75	221

Reference

1 X. M. Sun, and Y. D.Li, Angew. Chem. Int. Ed., 2004, 43, 597