Supporting Information

Self-assembled Zirconia Nanotube Arrays: Fabrication Mechanism, Energy Consideration and Optical Activity

Ahmad W. Amer^a, Seifallah M. Mohamed^a, Ahmed M. Hafez^a, Siham Y. Alqaradawi^b, Amina S. Aljaber^b and Nageh K. Allam^{a,*}

 ^aEnergy Materials Laboratory (EML), Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; E-mail: nageh.allam@aucegypt.edu
^bDepartment of Chemistry and Earth Sciences, Qatar University, P. O. Box 110003, Doha, Qatar.

Effect of Solvent Composition:

Figure S1. FESEM images of as-grown ZrO_2 nanotube arrays via anodic oxidation for 3hrs @50V in glycerol electrolytes containing 4wt% H₂O and 1wt%NH₄F, along with (a) 0% FA, (b) 10% FA, (c) 20% FA, (d) 30% FA, and (e) 40% FA. Panel (f) shows the time-dependent anodization current curves for different electrolyte compositions.

Effect of Fluoride and Water Contents:

Figure S2. FESEM images of as-grown ZrO_2 nanotube arrays via anodic oxidation for 3hrs @50V in glycerol electrolytes containing 20% FA, along with (a) 0.5wt% NH₄F and 2wt% H₂O, (b) 0.5wt% NH₄F and 3wt% H₂O, (c) 0.5wt% NH₄F and 4wt% H₂O, (d) 1wt% NH₄F and 2wt% H₂O, (e) 1wt% NH₄F and 3wt% H₂O, (f) 2wt% NH₄F and 2wt% H₂O, (g) 2wt% NH₄F and 4wt% H₂O.

Effect of Anodization Time:

Figure S3. FESEM images of as-grown ZrO_2 nanotube arrays via anodic oxidation @50V in glycerol electrolytes containing 20% FA, 4wt% H₂O and 1wt%NH₄F, for a duration of (a) 1hr, (b) 2hrs, (c) 5hs, (d) 6hrs, and (e) 16hrs.

Effect of Applied Anodization Voltage:

Figure S4. FESEM images of as-grown ZrO_2 nanotube arrays via anodic oxidation for 3hrs in glycerol electrolytes containing 20% FA, 4wt% H₂O and 1wt%NH₄F, (a) @10V and (b) @30V.

Table S1. ZrO_2 nanotube lengths, diameters, and wall thicknesses with varying FA contents in electrolytes.

Percent Formamide	Tube Diameter (nm)	Wall Thickness (nm)	Tube Length (µm)
0%	30	5	6.4
10%	74	7.8	10
20%	82	11.5	24.8
30%	80	14	48
40%	80	13	48

Table S2. Variation of ZrO_2 nanotube lengths (μm) with varying NH₄F and H₂O weight content in electrolytes.

	0.5wt% NH ₄ F	1wt% NH ₄ F	2 wt% NH ₄ F
2wt% H ₂ O	20.4	15	11.1
3wt% H ₂ O	30	23	18
4wt% H ₂ O	35	24.8	20