Spatially Controllable Plasmon Enhanced Water Splitting Photocurrent in Au/TiO₂-Fe₂O₃ Cocatalyst System

 Wei-Hsuan Hung^{1*}, Tzu-Ming Chien¹, An-Ya Lo², Chuan-Ming Tseng³, Dongdong Li⁴
¹Feng Chia University, Taichung 407, Taiwan
²Department of Chemical and Materials Engineering, National Chin-Yi University of Technology
³Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
⁴Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

Supporting Materials

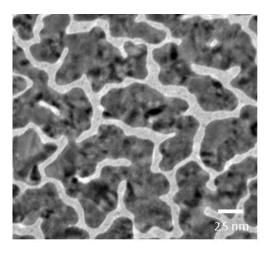
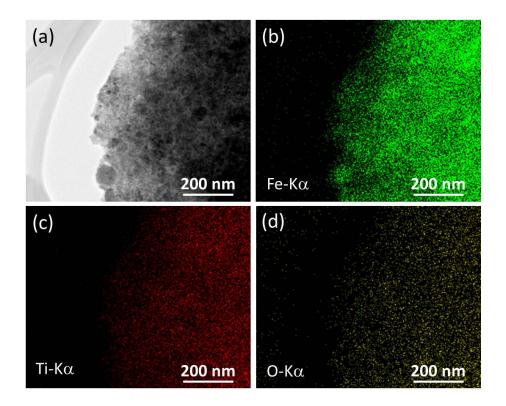



Figure S1. TEM image of island-like Au nanoparticles

Figure S2. (a) Bright-field STEM image of TiO_2 and Fe_2O_3 mixture. Elemental mapping images show the chemical distributions of (b) Iron (Fe-K α), (c) Titanium (Ti-K α) and (d) Oxygen (O-K α).

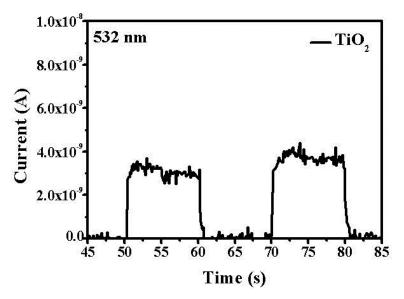
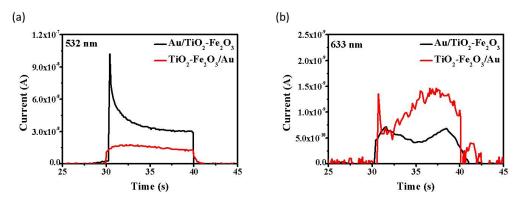
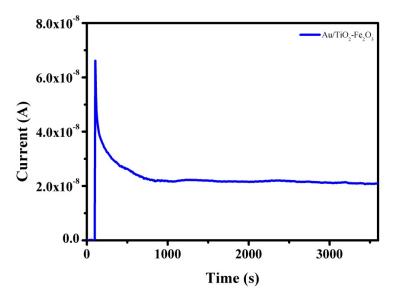




Figure S3. (a) The photocurrent response of TiO_2 only photoelectrode under 532 nm (600 mW)

Figure S4. (a) The photocurrent response of Au/TiO₂-Fe₂O₃ and TiO₂-Fe₂O₃/Au under 532 nm (600 mW) (b) and under 633 nm (10 mW) laser irradiation.

Figure S5. Prolonged Photocurrent measurement of Au/TiO₂-Fe₂O₃ photoelectrode under 532 nm laser irradiation

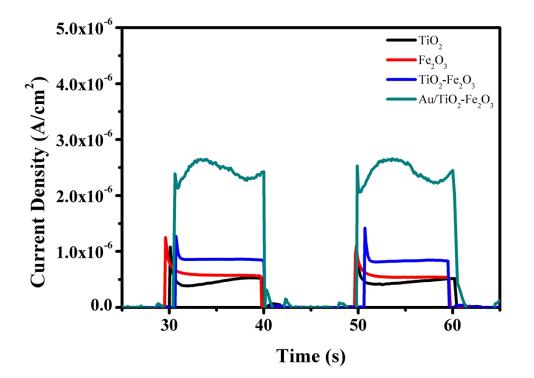


Figure S6. The photocurrent response of different photoelectrodes under simulated sunlight