Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014 ## **Supplementary Information File** In-vitro DNA binding, molecular docking and antimicrobial studies on newly synthesized poly(o-toluidine)-titanium dioxide nanocomposite Mohammad Shakir^a, Mohd Shoeb Khan^a, Saud Ibrahim Al-Resayes^b, Umair Baig^c, Parvez Alam^d, Rizwan Hasan Khan^d, Mahboob Alam^e ^aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202002, India. ^bDepartment of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia. ^c Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. ^dInterdisciplinary Biotechnology unit, Aligarh Muslim University, Aligarh-202002 (UP) India. ^eDivision of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea. > Author for Correspondence: shakir078@yahoo.com Phone No. +91-9837430035 **Table S1.** Details of preparation of POT and POT-TiO₂ nanocomposite. | Sample ID | Volume
of stock
solution A
taken (mL) | Volume
of stock
solution B
taken (mL) | Weight of TiO2 nanoparticles taken in 200 mL of 1M HCl (g) | Ratio of
o-toluidine
monomer
and TiO ₂ | |-----------------------|--|--|--|--| | POT | 100 | 100 | 0.0 g | 1:0 | | POT- TiO ₂ | 100 | 100 | 0.20 g | 1:1 | Stock solution A: 200 g of double distilled *o*-toluidine in 1000 mL of 1M HCl. Stock solution B: 72.5 g of K₂S₂O₈ in 1000 mL of 1M HCl. **Fig. S2:** The TEM micrograph represents the formation of PCz-TiO₂ nanocomposite and also showing the polymerization of carbazole on the surface of TiO₂ nanoparticles.