Electronic Supplementary Information

Synthesis of Hierarchically Meso-Macroporous TiO₂ Film Based on

UV Light-induced In Situ Polymerization: Application to

Dye-sensitized Solar Cells

Quan Jin^b[†], Zhiwen Li^a[†], Kaifeng Lin^a, Shuo Wang^b, Rongguo Xu^b and Dan Wang^{a,b}*

^a Academy of Fundamental Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China.

^b State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, 100190Beijing, P. R. China.

Figure S1. X-ray diffraction patterns of the TiO_2 film. The diffraction peaks correspond to the anatase phase of TiO_2 (JCPDS no. 21-1272).

Figure S2. TEM image (a) and HRTEM image (b) of the samples scratched off from the TiO_2 film. The inset in b shows Debye-Scherrer rings in the electron diffraction pattern.

Figure S3. BET Nitrogen adsorption-desorption isotherm and pore distribution (inset) of the TiO_2 film with net-like frameworks (TF-0).

Figure S4. SEM images of the synthesized films with the molar ratio POGTA/TTB = 0 and 0.2, (a) and (b) respectively. Insets show high magnification images of the film morpholosy.