Supplementary Information

Fast Synthesis of Ag-Pd@reduced graphene oxide bimetallic nanoparticles

and their applications as carbon-carbon coupling catalysts

Mingxi Chen^a Zhe Zhang^a Lingzhi Li^a Yu Liu^{a*} Wei Wang^b Jianping Gao^{a1}

^aSchool of Science, Tianjin University, Tianjin 300072, P R China

^bSchool of Chemical Engineering, Tianjin University, Tianjin 300072, P R China

¹ Corresponding author. Tel.: +862227403475; Fax: (+86)22-2740-3475. E-mail address: jianpinggaols@126.com (J.P. Gao).

Figure S2. Gas Chromatography-Mass Spectrometry (GC-MS) of the Suzuki–Miyaura carbon coupling (SMCC) reaction between phenylboronic acid and 1-bromo-4-nitrobenzene.

Figure S3. GC-MS of the SMCC reaction between phenylboronic acid and 4-bromotoluene.

Figure S4. GC-MS of the SMCC reaction between phenylboronic acid and 4-bromoanisole.

Figure S5. GC-MS of the SMCC reaction between phenylboronic acid and 4-bromoaniline.

Figure S6. GC-MS of the SMCC reaction between phenylboronic acid and 4-bromoaniline.

Figure S7. GC-MS of the SMCC reaction between phenylboronic acid and 1-bromo-4-

iodobenzene.

Figure S8. GC-MS of the SMCC reaction between phenylboronic acid and 1-bromo-4-

iodobenzene.

Figure S9. GC-MS of the SMCC reaction between phenylboronic acid and bromobenzene.

Figure S10. TEM images of the Ag-Pd@rGO bimetallic nanoparticles after SCC reaction

Figure S11. HAADF-STEM images of the Ag-Pd@rGO bimetallic nanoparticles