

Fig. S1 Fluorescence spectrum of the DAOB dimer with an excitation wavelength of 410 nm .

The protein was dissolved in 0.017 M pyrophosphate buffer (pH 8.3) at $10 \mu \mathrm{M}$.

Fig. S4 Comparoson of RMSF in DAOB dimer with other DAAO species.
Root of mean square fluctuations (RMSF), as obtained by AMBER10. Holo M, Holo A and Holo B in insert denote the holoDAAO monomer, Sub A and Sub B of the holoDAAO dimer, respectively. DAOB M, DAOB A and DAOB B denote the monomer of DAOB, Sub A and Sub B of the DAOB dimer, respectively. RMSFs of the holoDAAO monomer were taken from Nueangaudom et al. (2012), ${ }^{31}$ those for holoDAAO dimer from Nueangaudom et al. (2014), ${ }^{34}$ and those of DAOB monomer from Nueangaudom et al. (2012) ${ }^{33}$.

Fig. S6 Time-evolution of the NetES energy between the photoproducts as the Iso acceptor and the six fastest donators (ionic groups) in the DAOB dimer.

Fig. S7 Time-evolution of the ESDA between the Iso acceptor and the six fastest donators (Bz , Trp or Tyr cations) in the DAOB dimer.

ESDA (electrostatic energy between the iso anion and the donor cation or neutral Bz) was derived as $-e^{2} / \varepsilon_{D A} R_{j}$ from eqn (1) for Trp and Tyr, where the static dielectric constants $\varepsilon_{D A}^{A}$ and $\varepsilon_{D A}^{B}$ were used for Sub A and Sub B, respectively, or from eqn (11) for Bz.

Fig. S8 The radial distribution functions of water molecules near the heteroatoms of Iso.

The radial distribution functions (RDF) were obtained by ptraj module of Amber 10 program. Red, blue and black numbers are shown number of mean water molecules of DAOB dimer, Sub A and Sub B and DAOB monomer, ${ }^{33}$ respectively.

Fig. S9 Presence of water molecules near Iso and ET donors in a snapshot.

Panel (A) shows Sub A and (B) Sub B. ET donors are shown with Rc shorter than 1 nm .

Water molecules selected are shown with the distance from IsoN5 shorter than 0.7 nm .

Figure S10 Relationship between logarithmic ET rates and inter-planar angles between Iso and main donors.

Figure S11 Atom numbering of hydrogen bonded systems in DAOB dimer for MOPAC calculation.

Iso forms hydrogen bondings (H-bond) with Ala49, Leu51 and Thr317 in Sub A, while it forms H-bonds with Ala49 and Leu51 in Sub B.

Figure S12 HOMO-LUMO orbitals of Iso alone.

MOs were calculated with semi-empirical MOPAC method. PM6 basis set was used. Other key words were same with those in the previous work, ${ }^{35}$ except for EPS (static dielectric constant) key words which were all 2.6 ($\varepsilon_{0}^{D A}$ was nearly equal to $\varepsilon_{0}^{D B}, 2.6$, see Table 3) in the present work.

Table S1 Decay parameters of the DAOB dimer ${ }^{\text {a }}$

Wavelength $\left(\lambda_{i}\right)$	τ_{1}	α_{1}	τ_{2}	α_{2}
$(\mathrm{~nm})$	(ps)		(ps)	
480	0.30	0.815	1.9	0.185
485	0.42	0.71	4.23	0.29
490	0.506	0.600	4.46	0.400
510	0.942	0.22	4.47	0.78
530	1.486	0.337	4.95	0.663
550	1.46	0.36	5.00	0.64
580	0.94	0.26	4.52	0.74
600	0.877	0.25	4.40	0.75
630	0.84	0.486	6.46	0.514
640	0.713	0.47	7.34	0.53

${ }^{\text {a }}$ Data are taken from Mataga et al. $(2000)^{21}$.

Table S2. ET parameters in the DAOB monomer obtained with a similar model as with the DAOB dimer ${ }^{\text {a }}$

Protein	$G_{I s o}^{0}$ (eV)	$R_{0}^{B z}$ $(\mathrm{~nm})$	ε_{0}	$\varepsilon_{0}^{D A}$	χ^{2}
DAOB monomer	8.53	0.384	5.78	2.45	4.38×10^{-21}

${ }^{a}$ ET parameters were recalculated with the model where the static dielectric constant in the region between Iso and the donors with Rc values of less than $1 \mathrm{~nm}(\mathrm{Bz}, \mathrm{Tyr} 224 \text { and } \operatorname{Tyr} 228)^{33}$ was $\varepsilon_{0}^{D A}$ (eqn (2) and Nueungaudom et al. $\left.(2014)^{34}\right)$. In the previous work ${ }^{33}$ the dielectric constant in this region between Iso and these donors was assumed to be equal to ε_{0}.

Table S3 Charge density of Iso with and without H-bonds ${ }^{\text {a }}$

Molecule	Atom No.	Iso without H -bond		Ground		Excited	
		Ground	Excited	Sub A	Sub B	Sub A	Sub B
Iso	1	-0.613	-0.467	-0.616	-0.614	-0.440	-0.471
	2	0.747	0.713	0.750	0.750	0.716	0.717
	3	-0.519	-0.498	-0.514	-0.510	-0.480	-0.484
	4	-0.621	-0.616	-0.620	-0.624	-0.615	-0.616
	5	0.325	0.324	0.343	0.340	0.342	0.338
	6	0.659	0.651	0.662	0.661	0.653	0.653
	7	-0.501	-0.489	-0.535	-0.525	-0.511	-0.523
	8	-0.194	-0.122	-0.211	-0.212	-0.106	-0.131
	9	-0.101	-0.298	-0.093	-0.090	-0.277	-0.285
	10	-0.074	0.246	-0.075	-0.082	0.219	0.237
	11	-0.085	-0.319	-0.079	-0.075	-0.278	-0.302
	12	-0.028	0.247	-0.029	-0.035	0.230	0.244
	13	-0.477	-0.538	-0.477	-0.476	-0.537	-0.539
	14	0.174	0.197	0.173	0.172	0.197	0.196
	15	0.174	0.196	0.176	0.172	0.197	0.191
	16	0.172	0.190	0.172	0.175	0.190	0.200
	17	0.211	-0.060	0.216	0.217	-0.077	-0.065
	18	-0.526	-0.475	-0.527	-0.528	-0.476	-0.476
	19	0.189	0.174	0.189	0.179	0.175	0.171
	20	0.189	0.175	0.190	0.189	0.175	0.175
	21	0.179	0.171	0.179	0.190	0.171	0.175
	22	-0.348	-0.209	-0.352	-0.353	-0.209	-0.211
	23	0.193	-0.021	0.198	0.201	-0.026	-0.023
	24	0.194	0.181	0.195	0.194	0.183	0.182
	25	0.188	0.212	0.187	0.188	0.210	0.214
	26	0.384	0.323	0.387	0.387	0.317	0.329
	27	-0.137	-0.129	-0.138	-0.144	-0.179	-0.139
	28	-0.325	-0.335	-0.324	-0.324	-0.340	-0.343
	29	0.212	0.209	0.210	0.177	0.209	0.183
	30	0.179	0.188	0.178	0.212	0.183	0.217
	31	0.178	0.179	0.180	0.178	0.182	0.183
Ala49	32			-0.553	-0.553	-0.553	-0.557
	33			0.237	0.236	0.239	0.250
	34			-0.063	-0.062	-0.057	-0.058
	35			0.165	0.165	0.163	0.161
	36			-0.485	-0.480	-0.493	-0.489
	37			0.165	0.164	0.163	0.161
	38			0.172	0.169	0.171	0.170

	39	0.165	0.172	0.174	0.170
	40	0.349	0.353	0.344	0.347
	41	-0.503	-0.505	-0.505	-0.510
	42	0.128	0.120	0.131	0.133
	43	0.221	0.219	0.222	0.219
Leu51	44	-0.534	-0.535	-0.541	-0.536
	45	0.230	0.238	0.242	0.236
	46	-0.107	-0.095	-0.100	-0.102
	47	0.176	0.164	0.168	0.175
	48	-0.327	-0.325	-0.322	-0.330
	49	0.173	0.173	0.168	0.173
	50	0.149	0.154	0.154	0.151
	51	0.030	0.031	0.025	0.031
	52	0.108	0.107	0.110	0.106
	53	-0.508	-0.508	-0.508	-0.508
	54	0.155	0.160	0.156	0.160
	55	0.151	0.155	0.149	0.154
	56	0.161	0.151	0.160	0.153
	57	-0.509	-0.509	-0.507	-0.509
	58	0.153	0.154	0.154	0.154
	59	0.156	0.155	0.156	0.156
	60	0.159	0.158	0.157	0.158
	61	0.365	0.362	0.364	0.362
	62	-0.523	-0.520	-0.522	-0.526
	63	0.125	0.221	0.222	0.226
	64	0.225	0.118	0.121	0.121
Thr317	65	-0.525		-0.530	
	66	0.228		0.230	
	67	-0.227		-0.227	
	68	0.198		0.199	
	69	0.251		0.255	
	70	0.110		0.111	
	71	-0.538		-0.539	
	72	0.182		0.181	
	73	0.174		0.176	
	74	0.173		0.175	
	75	-0.590		-0.599	
	76	0.349		0.350	
	77	0.365		0.367	
	78	-0.492		-0.492	
	79	0.228		0.231	
	80	0.112		0.112	

a Charge densities were obtained with a semi-empirical MO of MOPAC (PM6). Other key words were same with those in the previous work, ${ }^{35}$ except for EPS (static dielectric constant) key words which were all $2.6\left(\varepsilon_{0}^{D A}\right.$ was nearly equal to $\varepsilon_{0}^{D B}, 2.6$, see Table 3$)$ in the present work. Ground and Excited denote the ground and excited states of Iso. Atom numbering of Iso and Hbond amino acids are indicated in Figure S11.

