Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Water molecules selected are shown with the distance from IsoN5 shorter than 0.7 nm.

Wavelength (λ_i)	$ au_1$	$\alpha_{_{1}}$	$ au_2$	α_{2}
(nm)	(ps)		(ps)	
480	0.30	0.815	1.9	0.185
485	0.42	0.71	4.23	0.29
490	0.506	0.600	4.46	0.400
510	0.942	0.22	4.47	0.78
530	1.486	0.337	4.95	0.663
550	1.46	0.36	5.00	0.64
580	0.94	0.26	4.52	0.74
600	0.877	0.25	4.40	0.75
630	0.84	0.486	6.46	0.514
640	0.713	0.47	7.34	0.53

Table S1 Decay parameters of the DAOB dimer^a

^a Data are taken from Mataga *et al*. (2000)²¹.

Table S2. ET parameters in the DAOB monomer obtained with a similar model as with the DAOB dimer^a

Protein	$G^0_{{\scriptscriptstyle I\!so}}$	$R_0^{\scriptscriptstyle Bz}$	\mathcal{E}_0	$oldsymbol{\mathcal{E}}_{0}^{DA}$	χ^{2}
	(eV)	(nm)			
DAOB	8.53	0.384	5.78	2.45	4.38 x 10 ⁻²¹
monomer					

^a ET parameters were recalculated with the model where the static dielectric constant in the region between Iso and the donors with Rc values of less than 1 nm (Bz, Tyr224 and Tyr228)³³ was ε_0^{DA} (eqn (2) and Nueungaudom *et al.* (2014)³⁴). In the previous work³³ the dielectric constant in this region between Iso and these donors was assumed to be equal to ε_0 .

Molecule	Atom No.	Iso w	ithout	Ground		Excited	
		Ground	Excited	Sub A	Sub B	Sub A	Sub B
Iso	1	-0.613	-0.467	-0.616	-0.614	-0.440	-0.471
	2	0.747	0.713	0.750	0.750	0.716	0.717
	3	-0.519	-0.498	-0.514	-0.510	-0.480	-0.484
	4	-0.621	-0.616	-0.620	-0.624	-0.615	-0.616
	5	0.325	0.324	0.343	0.340	0.342	0.338
	6	0.659	0.651	0.662	0.661	0.653	0.653
	7	-0.501	-0.489	-0.535	-0.525	-0.511	-0.523
	8	-0.194	-0.122	-0.211	-0.212	-0.106	-0.131
	9	-0.101	-0.298	-0.093	-0.090	-0.277	-0.285
	10	-0.074	0.246	-0.075	-0.082	0.219	0.237
	11	-0.085	-0.319	-0.079	-0.075	-0.278	-0.302
	12	-0.028	0.247	-0.029	-0.035	0.230	0.244
	13	-0.477	-0.538	-0.477	-0.476	-0.537	-0.539
	14	0.174	0.197	0.173	0.172	0.197	0.196
	15	0.174	0.196	0.176	0.172	0.197	0.191
	16	0.172	0.190	0.172	0.175	0.190	0.200
	17	0.211	-0.060	0.216	0.217	-0.077	-0.065
	18	-0.526	-0.475	-0.527	-0.528	-0.476	-0.476
	19	0.189	0.174	0.189	0.179	0.175	0.171
	20	0.189	0.175	0.190	0.189	0.175	0.175
	21	0.179	0.171	0.179	0.190	0.171	0.175
	22	-0.348	-0.209	-0.352	-0.353	-0.209	-0.211
	23	0.193	-0.021	0.198	0.201	-0.026	-0.023
	24	0.194	0.181	0.195	0.194	0.183	0.182
	25	0.188	0.212	0.187	0.188	0.210	0.214
	26	0.384	0.323	0.387	0.387	0.317	0.329
	27	-0.137	-0.129	-0.138	-0.144	-0.179	-0.139
	28	-0.325	-0.335	-0.324	-0.324	-0.340	-0.343
	29	0.212	0.209	0.210	0.177	0.209	0.183
	30	0.179	0.188	0.178	0.212	0.183	0.217
	31	0.178	0.179	0.180	0.178	0.182	0.183
Ala49	32			-0.553	-0.553	-0.553	-0.557
	33			0.237	0.236	0.239	0.250
	34			-0.063	-0.062	-0.057	-0.058
	35			0.165	0.165	0.163	0.161
	36			-0.485	-0.480	-0.493	-0.489
	37			0.165	0.164	0.163	0.161
	38			0.172	0.169	0.171	0.170

Table S3 Charge density of Iso with and without H-bonds^a

	39	0.165	0.172	0.174	0.170	
	40	0.349	0.353	0.344	0.347	
	41	-0.503	-0.505	-0.505	-0.510	
	42	0.128	0.120	0.131	0.133	
	43	0.221	0.219	0.222	0.219	
Leu51	44	-0.534	-0.535	-0.541	-0.536	
	45	0.230	0.238	0.242	0.236	
	46	-0.107	-0.095	-0.100	-0.102	
	47	0.176	0.164	0.168	0.175	
	48	-0.327	-0.325	-0.322	-0.330	
	49	0.173	0.173	0.168	0.173	
	50	0.149	0.154	0.154	0.151	
	51	0.030	0.031	0.025	0.031	
	52	0.108	0.107	0.110	0.106	
	53	-0.508	-0.508	-0.508	-0.508	
	54	0.155	0.160	0.156	0.160	
	55	0.151	0.155	0.149	0.154	
	56	0.161	0.151	0.160	0.153	
	57	-0.509	-0.509	-0.507	-0.509	
	58	0.153	0.154	0.154	0.154	
	59	0.156	0.155	0.156	0.156	
	60	0.159	0.158	0.157	0.158	
	61	0.365	0.362	0.364	0.362	
	62	-0.523	-0.520	-0.522	-0.526	
	63	0.125	0.221	0.222	0.226	
	64	0.225	0.118	0.121	0.121	
Thr317	65	-0.525		-0.530		
	66	0.228		0.230		
	67	-0.227		-0.227		
	68	0.198		0.199		
	69	0.251		0.255		
	70	0.110		0.111		
	71	-0.538		-0.539		
	72	0.182		0.181		
	73	0.174		0.176		
	74	0.173		0.175		
	75	-0.590		-0.599		
	76	0.349		0.350		
	77	0.365		0.367		
	78	-0.492		-0.492		
	79	0.228		0.231		
	80	0.112		0.112		

a Charge densities were obtained with a semi-empirical MO of MOPAC (PM6). Other key words were same with those in the previous work,³⁵ except for EPS (static dielectric constant) key words which were all 2.6 (ε_0^{DA} was nearly equal to ε_0^{DB} , 2.6, see Table 3) in the present work. Ground and Excited denote the ground and excited states of Iso. Atom numbering of Iso and H-bond amino acids are indicated in Figure S11.