Supporting information

Efficacy of CNTs bound polyelectrolyte membrane by spray-assisted layerby-layer (LbL) technique on water purification

Lei Liu ^a, Moon Son ^a, Hosik Park ^b, Evrim Celik ^c,

Chiranjib Bhattacharjee d, and Heechul Choi *a

^a School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-

gwagiro, 1 Oryong-dong, Buk-gu, Gwangju 500712, Republic of Korea.

Fax: +82 62 7152434; Tel: +82 62 7152576; E-mail: hcchoi@gist.ac.kr

b Research Center for Environmental Resources and Processes, Korea Research Institute of Chemical Technology (KRICT),

Daejeon 305600, Republic of Korea.

^c Department of Environmental Engineering, Faculty of Engineering, Suleyman Demirel University,

Isparta 32260, Turkey.

^d Department of Chemical Engineering, Jadavpur University, 188, Raja Subodh Chandra Mullick Road,

Kolkata 700032, India.

Table of contents

- **Fig. S1** Zeta potential of bare and surface-modified membranes with different number of bilayers.
- **Fig. S2** The fouled membrane by 20 mg/L humic acid after 20 mins DI water flushing (a) bare membrane, (b) M3.5-4 %, (c) M6.5-4 % without Ca²⁺; (d) bare membrane, (e) M3.5-4 %, (f) M6.5-4 % with 0.2 mM Ca²⁺

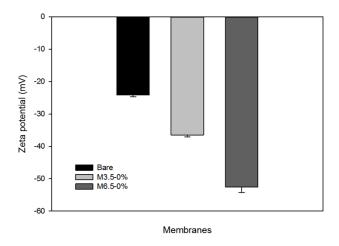


Fig. S1 Zeta potential of bare and surface-modified membranes with different number of bilayers.

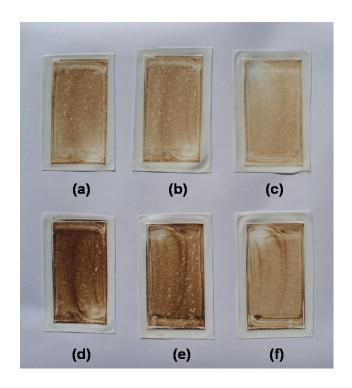


Fig. S2 The fouled membrane by 20 mg/L humic acid after 20 mins DI water flushing (a) bare membrane, (b) M3.5-4 %, (c)

M6.5-4 % without Ca^{2+} ; (d) bare membrane, (e) M3.5-4 %, (f) M6.5-4 % with 0.2 mM Ca^{2+}