Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Nanoengineered CdSe quantum dots-Montmorillonite composites: An efficient photocatalyst under visible light irradiation

Rajeev C. Chikate^{a,*} Brijesh S. Kadu^a and Madhura A. Damle^b

^aNanoscience Group, Department of Chemistry, Post-graduate and Research Centre, MES Abasaheb Garware College, Karve Road, Pune-411004, India

^bDepartment of Biotechnology, MES Abasaheb Garware College, Karve Road, Pune-411004, India

*Corresponding author email: rajuchikate29@gmail.com

*Corresponding author phone: 91-20-41038263: fax: 91-20-25438165; email: rajuchikate@rediffmail.com

Total number of pages: 10

Total number of figures: 08 (Figure S1 – S8).

Total number of Tables: 01 (Table T1).

Figure S1: Chemical structure of Indigo Carmine (IC)

Figure S2: Photocatalytic reactor used for degradation of IC.

Figure S3: FE-SEM images of 10%-CdSe-CTAB-MMT

Figure S4: Effect of pH on IC decolourisation at by 10%-CdSe-CTAB-MMT: { $[IC]_{ini} = 100 \text{ mg} \text{ L}^{-1}$; [Nanocomposite] = 1 g L⁻¹, at 25°C}.

Figure S5: HPLC chromatogram of the intermediates formed during degradation of IC in presence of (a) D.O. (without quencher) (b) BQ and (c) AA {extracted at 300 nm; $[IC]_{ini} = 100$ mg L⁻¹, [10%-CdSe-CTAB-MMT] = 1 g L⁻¹}.

Figure S6: MS of IC and its metabolites generated after the degradation with 10%-CdSe-CTAB-MMT.

Figure S7: XRD and TEM analysis of (a) fresh and (b) recovered 10%-CdSe-CTAB-MMT.

Figure S8: Antibacterial activity of IC and degraded IC against (a) *B.subtilis* (b) *S.aureus* and (c) *E.coli*.

Metabolite	%ABS*	Vol.	TPSA	NROTB	HBA	HBD	log P	FW	DLS
IC	46.86	297.37	180.12	2	10	2	-2.41	420.38	-0.64
IB	86.32	223.96	65.72	0	4	2	2.90	262.27	-0.33
Ι	91.77	123.57	49.93	0	3	1	0.83	147.13	-1.37
II	87.15	122.33	63.32	1	3	3	1.46	137.14	-0.62
III	87.24	132.56	63.07	0	4	1	0.73	163.13	-1.41
IV	91.25	207.78	51.45	0	4	0	2.61	248.24	0.11

Table T1: Calculated absorption (%ABS), polar surface area (PSA) and Lipinski parameters for

 IC and its metabolites.

*The degree of absorption (%ABS) is calculated as: %ABS = $109 - (0.345 \times TPSA)$.