Electronic supplementary information (ESI)

Photoelectrochemical Activity of ZnFe₂O₄ Modified α-Fe₂O₃ Nanorod Array Films

Youhong Guo,^a Yanming Fu,^b Ya Liu^b, and Shaohua Shen^{b*}

^{*a*} Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

^b International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China. E-mail: shshen_xjtu@mail.xjtu.edu.cn

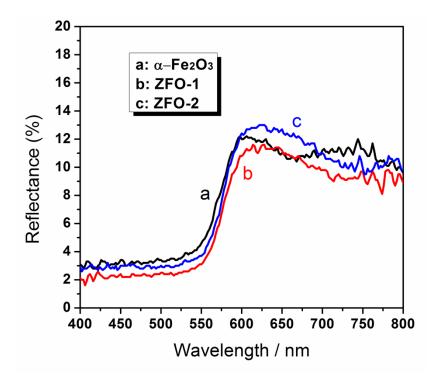


Fig. S1. Spectral reflectance for pristine α -Fe₂O₃ and ZnFe₂O₄ modified α -Fe₂O₃ (ZFO-1 and ZFO-2) nanorod films.

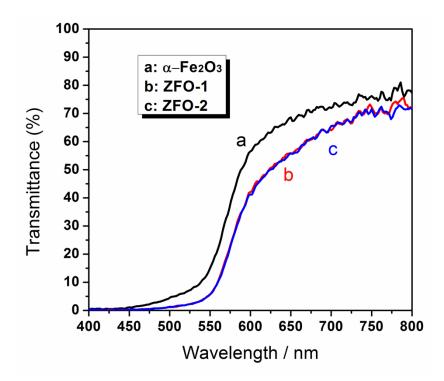


Fig. S2. Spectral transmittance for pristine α -Fe₂O₃ and ZnFe₂O₄ modified α -Fe₂O₃ (ZFO-1 and ZFO-2) nanorod films.

The band gap can be determined from transmittance and reflectance spectra using the Tauc plot method as expressed in equation (1).¹

$$\alpha h v = C(h v - E_g)^n \qquad (1)$$

where α is the absorption coefficient, hv the photon energy, C the photon energy dependent constant, and E_g the band gap energy. Exponent n takes 1/2 and 2 for direct and indirect optical transition, respectively. In addition, the absorption coefficient α can be expressed by equation (2).²

$$\alpha d = \ln(T/(1 - R)^2)$$
 (2)

where *d*, *T* and *R* represent the thickness, transmittance, and reflectance of the films, respectively. Exponent *n* takes 2 because α -Fe₂O₃ is an indirect optical transition material. Fig. S3 shows the $(\alpha hv)^{1/2}$ versus photon energy plot.

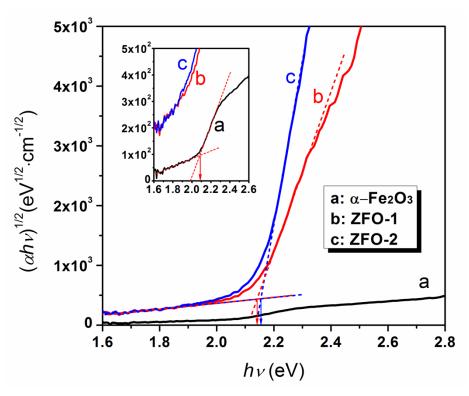


Fig. S3. Plots of $(\alpha hv)^{1/2}$ versus photon energy of pristine α -Fe₂O₃ and ZnFe₂O₄ modified α -Fe₂O₃ (ZFO-1 and ZFO-2) nanorod films.

References

1. J.-W. Lee, J.-H. Im and N.-G. Park, Nanoscale, 2012, 4, 6642–6648.

2. R. Bhattacharya, J. Electrochem. Soc., 1983, 130, 2040–2042.