5-Ferrocenyl-2,2'-bipyridine Ligands: synthesis, palladium(II) and copper(I) complexes, optical and electrochemical properties.

Synøve Ø. Scottwell, ${ }^{a}$ Karl J. Shaffer, ${ }^{a}$ C. John McAdam, ${ }^{a}$ and James D. Crowley ${ }^{a *}$
${ }^{\text {ad Department of Chemistry, University of Otago, PO Box 56, Dunedin, }}$

New Zealand; Fax: +64 3479 7906; Tel: +64 34797731.
*jcrowley@chemistry.otago.ac.nz

Contents

1 Experimental Procedures 3
1.1 General 3
1.2 Ligand Synthesis 4
1.2.1 Synthesis of 5-bromo-2,2'-bipyridine (2a) 4
1.2.2 Synthesis of 5-bromo-5'-methyl-2,2'-bipyridine (2b)5
1.2.3 Synthesis of 5-ferrocenyl-2,2'-bipyridine (3a)6
1.2.4 Synthesis of 5-ferrocenyl-5'-methyl-2,2'-bipyridine (3b) 7
1.2.5 Synthesis of 6,6'-dimesityl-2,2'-bipyridine (10) 8
1.3 Palladium(II) Complexation 9
1.3.1 Synthesis of $\left[\mathrm{Pd}(5\right.$-ferrocenyl-2,2'-bipyridine $\left.) \mathrm{Cl}_{2}\right](4 a)$ 9
1.3.2 Synthesis of $\left[\mathrm{Pd}\left(5\right.\right.$-ferrocenyl-5'-methyl-2,2'-bipyridine) $\left.\mathrm{Cl}_{2}\right]$ (4b) 9
1.3.3 Synthesis of $\left[\operatorname{Pd}\left(5-\right.\right.$ ferrocenyl-2,2'-bipyridine) $\left.(\text { pyridine })_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(5 a)$ 10
1.3.4 Synthesis of [Pd(5-ferrocenyl-5'-methyl-2,2'-bipyridine)(pyridine) $\left.{ }_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(5 \mathbf{b})$ 11
1.3.5 Synthesis of $\left[\mathrm{Pd}\left(5\right.\right.$-ferrocenyl-2,2'-bipyridine) $\left(\mathrm{DMAP}_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(6 a)$ 12
1.3.6 Synthesis of $\left[P d\left(5-f e r r o c e n y l-5 '-m e t h y l-2,2^{\prime}\right.\right.$-bipyridine) $\left(\mathrm{DMAP}_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ (6b) 13
1.3.7 Synthesis of $\left[\mathrm{Pd}(5 \text {-ferrocenyl-2,2'-bipyridine })_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ (9a) 14
1.4 Copper(I) Complexation 15
1.4.1 $\left[\mathrm{Cu}\left(6,6^{\prime}\right.\right.$-dimesityl-2,2'-bipyridine) $\left.(\mathrm{MeCN})_{2}\right] \mathrm{PF}_{6}(\mathbf{1 0 C u})$ 15
1.4.2 $\left[\mathrm{Cu}\left(6,6^{\prime}\right.\right.$-dimesityl-2,2'-bipyridine)(5-ferrocenyl-2,2'-bipyridine) $] \mathrm{PF}_{6}$ (11a) 16
1.4.3 [Cu(6,6'-dimesityl-2,2'-bipyridine)(5-ferrocenyl-5'-methyl-2,2'-bipyridine)]PF 6 (11b). 17
2 Pertinent ${ }^{1} \mathrm{H}$ NMR Stackplots 18
3 Representative Mass Spectra 21
4 UV-Vis Spectra 26
5 Electrochemistry 28
5.1 Representative Voltammograms 28
6 X-ray Data 30
6.1 Crystallographic Data Tables 30
6.2 Crystal Structures and Relevant Notes 33
7 References 37

1 Experimental Procedures

1.1 General

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. The solvents used were laboratory grade, with petrol referring to the fraction of petroleum ether boiling in the range $40-60{ }^{\circ} \mathrm{C}$, and ether referring to diethyl ether. Dry tetrahydrofuran (THF), acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and chloroform $\left(\mathrm{CHCl}_{3}\right)$ were obtained by passing them through an activated alumina column using a PureSolv TM solvent purification system (Innovative Technologies Inc., MA). Ammonium hydroxide/ethylenediaminetetraacetic acid $\left(\mathrm{NH}_{4} \mathrm{OH} / E D T A\right)$ solution was made up by dissolving 30 g EDTA with 900 mL water and 100 mL NH 4 OH . Microwave-assisted reactions were performed in a CEM Focused Microwave Synthesis System, Discover S-Class (CEM Corporation, NC), at 300 W.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either a 400 MHz Varian/Agilent $400-\mathrm{MR}$ or Varian 500 MHz AR spectrometer at 298 K . Chemical shifts (δ) are reported in parts per million (ppm) and referenced to residual solvent peaks $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H} \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{C} \delta 77.16 \mathrm{ppm} ; d_{6}\right.$-acetone: ${ }^{1} \mathrm{H} \delta$ $2.05 \mathrm{ppm} ;{ }^{13} \mathrm{C} \delta 29.84 \& 206.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{CN}:{ }^{1} \mathrm{H} \delta 1.94 \mathrm{ppm},{ }^{13} \mathrm{C} \delta 1.32$ \& 118.26 ppm$)$. Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: $m=$ multiplet, $q=$ quartet, $t=$ triplet, $d t=$ double triplet, $d=$ doublet, $d d=$ double doublet, $s=$ singlet. IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with an attached ALPHA-P measurement module, and band intensities are reported as strong (s), medium (m), or weak (w). Microanalyses were conducted at the Campbell Microanalytical Laboratory at the University of Otago. Electrospray mass spectra (ESMS) were collected on a Bruker micrOTOF-Q spectrometer. Melting points were determined using a Leica VMHB melting bar. UV-visible absorption spectra were acquired with a Jasco V550 UV/VIS spectrophotometer.

1.2 Ligand Synthesis

1.2.1 Synthesis of 5-bromo-2,2'-bipyridine (2a)

The synthesis of this compound has previously been reported by Rieke in 72\% yield. ${ }^{1}$

Under a nitrogen atmosphere, a solution of 2-pyridylzinc(II) bromide (THF, $0.5 \mathrm{M}, 50 \mathrm{~mL}, 25.0 \mathrm{mmol}$, 1.10 eq.) was added to a solution of THF (20 mL) containing 2,5-dibromopyridine ($5.38 \mathrm{~g}, 22.7 \mathrm{mmol}$, 1.00 eq.) and tetrakis(triphenylphosphine)palladium(0) ($0.53 \mathrm{~g}, 0.46 \mathrm{mmol}, 0.02 \mathrm{eq}$.). The resulting suspension was refluxed for five hours, before stirring at room temperature overnight (16 hours). $\mathrm{NH}_{4} \mathrm{OH} /$ EDTA (200 mL) and $\mathrm{CH}_{2} \mathrm{Cl} 2(150 \mathrm{~mL})$ were added and the mixture allowed to stir for four hours. The organic phase was washed with water ($2 \times 50 \mathrm{~mL}$) and saturated aqueous NaCl $(2 \times 50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and excess solvent removed under reduced pressure. Column chromatography (silica gel, gradient 100% petrol, then $1: 1$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone) was used to obtain a colourless solid. The solid residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and vapour diffused diethyl ether to provide colourless crystals. Yield: $3.84 \mathrm{~g}, 72 \% . \mathrm{Mp} 82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.72 (dd, $J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$) 8.67 (ddd, $J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}$) $8.37(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, H_{c}), 8.32 (dd, $J=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}$), 7.93 (dd, $J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$), 7.81 (ddd, J = $8.1,7.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}$), 7.33 (ddd, $J=7.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,154.8,150.3,149.4$, 139.6, 137.2, 124.1, 122.5, 121.3, 121.1; IR (ATR): v (cm^{-1}) 3089 (w), 1549 (m), 1431 (m), 1363 (m), 1001 (s), 786 (s), 733 (s), 631 (s); HRESI-MS (MeOH): $m / z=234.9870[\mathbf{2 a + H}]^{+}$(calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{H}$ 234.9865), $m / z=256.9684[\mathbf{2 a + N a}]^{+}$(calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrN} \mathrm{N}_{2} \mathrm{Na}$ 256.9685); Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrN} \mathrm{N}_{2}$: C, 51.09; H, 3.00; N, 11.92. Found: C, 51.09; H, 2.93; N, 11.65 .

Figure $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$.

Figure $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$.

1.2.2 Synthesis of 5-bromo-5'-methyl-2,2'-bipyridine (2b)

The synthesis of this compound has previously been reported by Rieke in 63% yield. ${ }^{1}$

Under a nitrogen atmosphere, a solution of 5-methyl-2-pyridylzinc(II) bromide (THF, $0.5 \mathrm{M}, 50 \mathrm{~mL}$, $25.0 \mathrm{mmol}, 1.20 \mathrm{eq}$.) was added to a solution of THF (20 mL) containing 2,5-dibromopyridine (5.00 g , 21.1 mmol, 1.00 eq.) and tetrakis(triphenylphosphine) palladium(0) ($0.45 \mathrm{~g}, 0.39 \mathrm{mmol}, 0.02 \mathrm{eq}$.). The resulting suspension was refluxed for five hours, before stirring at room temperature overnight (16 hours). $\mathrm{NH}_{4} \mathrm{OH} /$ EDTA (200 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ were added and the mixture allowed to stir for four hours. The organic phase was washed with water $(2 \times 50 \mathrm{~mL})$ and saturated aqueous NaCl $(2 \times 50 \mathrm{~mL})$, then dried over MgSO_{4} and excess solvent removed under reduced pressure. The crude product was slurried with ether, filtered and washed with additional ether. Column chromatography (silica gel, gradient $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone) was used to obtain a colourless solid. The solid residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and vapour diffused diethyl ether to provide colourless crystals. Yield: $4.73 \mathrm{~g}, 90 \% . \mathrm{Mp} 102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70\left(\mathrm{dd}, J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 8.49$ (dd, $\left.J=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 8.29-8.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c} / \mathrm{d}}\right), 7.92\left(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 7.62(\mathrm{ddq}, J=8.0$, $\left.2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,152.8,150.1,149.8,139.5$, 137.6, 133.9, 122.1, 120.8, 120.6, 18.5; IR (ATR): v (cm^{-1}) 2918 (m), 1544 (m), 1456 (m), 1360 (m), 818 (s); HRESI-MS (MeOH): $m / z=270.9804$ [2b+Na] ${ }^{+}$(calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{Na} 270.9841$); Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2}$: C, 53.04; H, 3.64; N, 11.25. Found: C, $53.11 ; \mathrm{H}, 3.61 ; \mathrm{N}, 11.22$.

Figure $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$.

Figure $\mathbf{S 4}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 b}$.

1.2.3 Synthesis of 5-ferrocenyl-2,2'-bipyridine (3a)

1,4-Dioxane (4.0 mL), 1,2-dimethoxyethane (4.0 mL), $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($3.0 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.50 \mathrm{eq}$.) and 3 M NaOH ($1.5 \mathrm{~mL}, 1.50 \mathrm{mmol}, 0.75$ eq.) were added to a 35 mL microwave vial equipped with a stirrer bar and degassed with N_{2} for 10 minutes. Ferroceneboronic acid (0.454 g , $1.98 \mathrm{mmol}, 1.00$ eq.), 5-bromo-2,2'-bipyridine ($0.464 \mathrm{~g}, 1.98 \mathrm{mmol}, 1.00$ eq.) and [PdCl_{2} (1,1'-bis(diphenylphosphino)ferrocene] ($0.081 \mathrm{~g}, 0.10 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were added to the vial which was sealed then flushed with N_{2}. The vial was shaken to ensure homogeneity then heated via microwave irradiation for 30 minutes at $110{ }^{\circ} \mathrm{C}(300 \mathrm{~W})$. The reaction mixture was added to aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and after a second extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, the combined organic layers were filtered and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the product purified by column chromatography (silica gel, gradient 100:0 to 99:1 to 98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone). The product was isolated as an orange solid ($0.419 \mathrm{~g}, 62 \%$). $\mathrm{Mp} 142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.69\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right.$), $8.40\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 8.33(\mathrm{~d}$, $\left.J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 7.87\left(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.82\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 7.32-7.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right)$, $4.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.08\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,153.6,149.3$, $146.8,137.0,136.0,133.9,123.5,120.8,120.8,81.41,69.9,69.8,66.7$; IR (ATR): v ($\left.\mathrm{cm}^{-1}\right) 1571(\mathrm{~m})$, 1462 (m), 1431 (s), 1376 (m), 1105 (m), 889 (s), 815 (s), 799 (s), 751 (s), 508 (s), 491 (s), 460 (s); HRESI-MS (MeOH) $m / z=341.0722[3 a+H]^{+}$(calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeN}_{2} \mathrm{H}$ 341.0736). UV-Vis (acetone) $\lambda_{\max }$ ($\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$): 369 (4000), 456 (1400); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeN}_{2}$: C, 70.61; H, 4.74; N, 8.23. Found: C, 70.57; H, 4.84; N, 8.40.

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a.

Figure $\mathbf{S 6}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 a}$.

1.2.4 Synthesis of 5-ferrocenyl-5'-methyl-2,2'-bipyridine (3b)

1,4-Dioxane (4.0 mL), 1,2-dimethoxyethane (4.0 mL), $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($3.0 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.81$ eq.) and 3 M NaOH ($1.5 \mathrm{~mL}, 1.50 \mathrm{mmol}, 0.91$ eq.) were added to a 35 mL microwave vial equipped with a stirrer bar and degassed with N_{2} for 10 minutes. Ferroceneboronic acid (0.380 g , $1.65 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , 5-bromo-5'-methyl-2,2'-bipyridine (0.412 \mathrm{~g}, 1.65 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and [$\mathrm{PdCl}_{2}\left(1,1^{\prime}\right.$-bis(diphenylphosphino)ferrocene] ($0.068 \mathrm{~g}, 0.08 \mathrm{mmol}, 0.05 \mathrm{eq}$.) were added to the vial which was sealed then flushed with N_{2}. The vial was shaken to ensure homogeneity then heated via microwave irradiation for 30 minutes at $110{ }^{\circ} \mathrm{C}(300 \mathrm{~W})$. The reaction mixture was added to aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and after a second extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ the combined organic layers were filtered and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the product purified by column chromatography (silica gel, gradient 100:0 to 99:1 to 98:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone). The product was isolated as an orange solid ($0.426 \mathrm{~g}, 73 \%$). $\mathrm{Mp} 165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 8.28\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{f} / \mathrm{g}}\right), 7.85(\mathrm{dd}, J=8.2$, $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.63\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 4.73\left(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.40\left(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.08$ (s, 5H, H_{a}), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,153.7,149.8,146.7,137.6,135.5$, 134.0, 133.2, 120.5, 120.4, 81.6, 69.9, 69.8, 66.7, 18.5; IR (ATR): v (cm^{-1}) 1573 (w), 1475 (m), 1374 (m), 1103 (m), 1090 (m), 1027 (m), 886 (m), 825 (s$), 739$ (m), 649 (m), 510 (s$), 492$ (s$)$; HRESI-MS (MeOH): $m / z=355.0871[3 b+H]^{+}$(calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FeN}_{2} \mathrm{H}$ 355.0892); UV-Vis (acetone) $\lambda_{\max }$ ($\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$): 364 (4100), 450 (1200); Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FeN}_{2}: \mathrm{C}, 71.20 ; \mathrm{H}, 5.12 ; \mathrm{N}, 7.91$. Found: C, 70.81; H, 5.14; N, 7.99.

Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 b}$.

Figure $\mathbf{S 8}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 b}$.

1.2.5 Synthesis of 6,6'-dimesityl-2,2'-bipyridine (10)

The synthesis of this compound has previously been reported by Schmittel in 72\% yield. ${ }^{2}$

Under a nitrogen atmosphere, 6,6'-dibromo-2,2'-bipyridine ($0.20 \mathrm{~g}, 0.64 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and tetrakis(triphenylphosphine)palladium(0) ($0.006 \mathrm{~g}, 5.2 \mu \mathrm{~mol}, 0.008 \mathrm{eq}$.$) were dissolved in degassed$ boiling toluene. A solution of mesitylboronic acid ($0.25 \mathrm{~g}, 1.52 \mathrm{mmol}, 2.40 \mathrm{eq}$.) in methanol (5 mL) and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($8 \mathrm{~mL}, 16.0 \mathrm{mmol}, 25.1 \mathrm{eq}$.) were added, and the mixture refluxed for four hours. An additional 0.1 g of mesitylboronic acid was then added, and heating was continued for a further three days. After cooling, the solvent layers were separated, and the organic layer washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ containing a small amount of ammonia. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, which in turn was washed with the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. Column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was used to isolate the white product ($0.199 \mathrm{~g}, 80 \%$). Mp $211{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 7.80\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.21(\mathrm{~d}$, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 6.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 2.12\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl$\left.{ }_{3}\right)$ ס 159.2, 156.4, 138.2, 137.6, 137.0, 136.1, 128.6, 124.8, 119.3, 21.3, 20.6; IR: v (cm^{-1}) 2915 (w), 1561 (s), 1438 (s), 851 (s), 815 (s), 631 (s); HRESI-MS (MeOH): $m / z=393.2329[10+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{H}$ 393.23), $m / z=415.2158[10+\mathrm{Na}]^{+}$(calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Na} 415.53$); Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2}$: C, 85.67; H, 7.19; N, 7.14. Found: C, 85.43; H, 7.28; N, 7.28.

Figure $\mathbf{S 9} \mathbf{~}^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0}$.

Figure $\mathbf{S 1 0}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0}$.

1.3 Palladium(II) Complexation

1.3.1 Synthesis of $\left[\operatorname{Pd}(5-\right.$-ferrocenyl-2,2'-bipyridine $\left.) \mathrm{Cl}_{2}\right]$ (4a)

$\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right](15 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.00$ eq.) was added to a solution of 3 a ($20 \mathrm{mg}, 0.059 \mathrm{mmol}$, 1.00 eq.) in acetone (10 mL) and stirred for 30 minutes at room temperature, briefly sonicating during this time. The insoluble product precipitated and after addition of petroleum ether (10 mL) was isolated by filtration to give an orange solid ($29 \mathrm{mg}, 97 \%$). Mp $>230^{\circ} \mathrm{C}$; IR: v (cm^{-1}) 3098 (w), 1603 (m), 1480 (m), 1439 (m), 1174 (s), 841 (s), 811 (s), 779 (s), 740 (s), 717 (s); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{FeN}_{2} \mathrm{Pd}: \mathrm{C}, 46.42 ; \mathrm{H}, 3.12 ; \mathrm{N}, 5.41$. Found: C, $46.67 ; \mathrm{H}, 3.23 ; \mathrm{N}, 5.40$.

1.3.2 Synthesis of $\left[\mathrm{Pd}\left(5-f e r r o c e n y l-5 '-m e t h y l-2,2^{\prime}\right.\right.$-bipyridine $\left.) \mathrm{Cl}_{2}\right]$ (4b)

$\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right](15 \mathrm{mg}, 0.028 \mathrm{mmol}, 1.00$ eq.) in acetone $(2 \mathrm{~mL})$ was layered over a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ containing $\mathbf{3 b}(20 \mathrm{mg}, 0.028 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and allowed to slowly diffuse together. The insoluble product formed as X-ray quality orange crystals ($27 \mathrm{mg}, 90 \%$). $\mathrm{Mp}>230{ }^{\circ} \mathrm{C}$; IR: v (cm^{-1}) 3076 (w), 1604 (w), 1489 (m), 1408 (m), 1377 (m), 1160 (m), 827 (s), 803 (s), 714 (m), 494 (s); Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{FeN}_{2} \mathrm{Pd}$: C, 47.45; H, 3.41; N, 5.27. Found: C, 47.50; H, 3.35; N, 5.27.

1.3.3 Synthesis of $\left[\operatorname{Pd}\left(5-\right.\right.$-ferrocenyl-2,2'-bipyridine) $\left.(\text { pyridine })_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(5 \mathrm{a})$

A solution of pyridine ($24 \mu \mathrm{~L}, 0.294 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in acetone (5 mL) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]\left(38 \mathrm{mg}, 0.147 \mathrm{mmol}, 1.00\right.$ eq.) in acetone (5 mL) and stirred for 30 minutes. AgSbF_{6} ($101 \mathrm{mg}, 0.294 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in acetone (5 mL) was added and the solution was stirred for a further 30 minutes before the AgCl precipitate was removed via filtration. 3 a ($50 \mathrm{mg}, 0.147 \mathrm{mmol}$, 1.00 eq.) in acetone (5 mL) was added and the solution was stirred for 30 minutes. The crude product was obtained by precipitation upon addition of diethyl ether then purified by re-crystallisation from acetone via vapour diffusion of diethyl ether. Finally, after physical separation from a $\left[\mathrm{Pd}(\text { pyridine })_{4}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ impurity $\sim 5 \mathrm{mg}$, the product was isolated as purple needles (99 mg , $63 \%) . \mathrm{Mp}>230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-acetone) $\delta 9.57\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right.$), $9.45(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{\mathrm{n}}$), $8.68\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 8.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.58-8.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{f} / \mathrm{g}}\right), 8.48(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{m}}\right), 8.34\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right), 8.08\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{l}}\right), 7.94\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 7.76-7.70(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{h} / \mathrm{i}}\right), 7.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.06\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, d_{6}-acetone) $\delta 157.6,152.8,152.6,151.2,146.9,144.1,143.8,143.2,142.8,138.9,129.6,129.5$, $128.7,128.6,125.3,124.9,78.1,72.6,71.1,68.1$; IR: v $\left(\mathrm{cm}^{-1}\right) 1594(\mathrm{w}), 1476$ (m), 1454 (m), $1290(\mathrm{w})$, 1247 (w), 1074 (w), 1020 (w), 788 (m), 762 (m), 698 (m), 653 (s); HRESI-MS (MeOH/acetone) $\mathrm{m} / \mathrm{z}=$ 761.9091 [5a-Pyr-SbF $]_{6}{ }^{+}$(calc. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{FeN}_{3} \mathrm{PdSb} 761.9071$), $\mathrm{m} / z=559.9831$ [5a+Cl-Pyr-2SbF$]_{6}{ }^{+}$ (calc. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClFeN}_{3} \mathrm{Pd} 559.9813$); UV-Vis (acetone) $\lambda_{\max }\left(\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right.$): 348 (31100), 550 (5200); Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{FeN}_{4} \mathrm{PdSb}_{2} \mathrm{~F}_{12}$: C, 33.48; H, 2.43; N, 5.21. Found: C, 3.83; H, 2.48; N, 5.14.

Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, d_{6}$-acetone) of $\mathbf{5 a}$.

Figure S12 ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{d}_{6}$-acetone) of $\mathbf{5 a}$.

1.3.4 Synthesis of $\left[\operatorname{Pd}(5-\right.$ ferrocenyl-5'-methyl-2,2'-bipyridine) $\left.)(\text { pyridine })_{2}\right]\left(\text { SbF }_{6}\right)_{2}(5 b)$

A solution of pyridine ($23 \mathrm{LL}, 0.282 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in acetone (5 mL) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]\left(37 \mathrm{mg}, 0.141 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) in acetone (5 mL) and stirred for 30 minutes. AgSbF_{6} ($97 \mathrm{mg}, 0.282 \mathrm{mmol}, 2.00$ eq.) in acetone (5 mL) was added and the solution was stirred for a further 30 minutes before the AgCl precipitate was removed via filtration. 3b ($50 \mathrm{mg}, 0.141 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetone (5 mL) was added and the solution was stirred for 30 minutes. The crude product was obtained by precipitation upon addition of diethyl ether then purified by re-crystallisation from acetone via vapour diffusion of diethyl ether. Finally, after physical separation from a $\left[\mathrm{Pd}(\text { pyridine })_{4}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ impurity $\sim 5 \mathrm{mg}$, the product was isolated as purple needles ($111 \mathrm{mg}, 70 \%$). Mp $>230{ }^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, d_{6}\right.$-acetone) $\delta 9.57\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right), 9.43\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right), 8.58$ $\left(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{f} / \mathrm{g}}\right), 8.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.48\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 8.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 8.33(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right), 8.07\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{l}}\right), 7.92\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right), 7.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 7.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 4.62(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.05\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-acetone) $\delta 155.1$, 152.9, 152.7, 151.0, 146.8, 144.2, 143.6, 143.2, 142.9, 140.3, 139.0, 129.7, 129.5, 129.5, 125.0, 124.4, 72.5, 71.2, 71.10, 68.1, 18.7; IR: v (cm^{-1}) 1606 (w), 1486 (m), 1454 (m), 1291 (w), 1247 (w), $841(\mathrm{~m}), 762(\mathrm{~m}), 694(\mathrm{~m}), 653(\mathrm{~s})$; HRESI-MS (MeOH/acetone) $\mathrm{m} / \mathrm{z}=775.9209$ [5b-Pyr-SbF $\mathrm{C}_{6}{ }^{+}$(calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{Fe} \mathrm{N}_{3} \mathrm{PdSb} 775.9228$), $\mathrm{m} / \mathrm{z}=573.9945$ [$\left.\mathbf{5 b}+\mathrm{Cl}-\mathrm{Pyr}-2 \mathrm{SbF}_{6}\right]^{+}$(calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClFeN} \mathrm{N}_{3} \mathrm{Pd}$ 573.9973); UV-Vis (acetone) $\lambda_{\max }\left(\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right.$): 349 (34900), 547 (5200); Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FeN}_{4} \mathrm{PdSb}_{2} \mathrm{~F}_{12}$: C, 34.15; H, 2.59; N, 5.14. Found: C, 34.40; H, 2.69; N, 5.00.

Figure $\mathbf{S 1 3}{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, d_{6}$-acetone) of $\mathbf{5 b}$.

Figure $\mathbf{S 1 4}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, d_{6}$-acetone) of $\mathbf{5 b}$.

1.3.5 Synthesis of $\left[\operatorname{Pd}\left(5\right.\right.$-ferrocenyl-2,2'-bipyridine) $\left.\left(\mathrm{DMAP}_{2}\right)_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(6 \mathrm{a})$

A solution of DMAP ($14 \mathrm{mg}, 0.118 \mathrm{mmol}, 2.00$ eq.) in acetone (5 mL) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]\left(15 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.00\right.$ eq.) in acetone (5 mL) and stirred for 30 minutes. AgSbF_{6} ($40 \mathrm{mg}, 0.118 \mathrm{mmol}, 2.0$ equiv.) in acetone (5 mL) was added and the solution was stirred for a further 30 minutes before the AgCl precipitate was removed via filtration. 3 a ($20 \mathrm{mg}, 0.059 \mathrm{mmol}$, 1.0 equiv.) in acetone (5 mL) was added and the solution was stirred for 30 minutes. The crude product was obtained by precipitation upon addition of petroleum ether then purified by re-crystallisation from acetone via vapour diffusion of diethyl ether. Finally, after physical separation from a $\left[\mathrm{Pd}(\mathrm{DMAP})_{4}\right](\mathrm{SbF6})_{2}$ impurity $\sim 5 \mathrm{mg}$, the product was isolated as purple blocks ($48 \mathrm{mg}, 71 \%$). $\mathrm{Mp}>230^{\circ} \mathrm{C}$; IR: $v\left(\mathrm{~cm}^{-1}\right) 1619$ (m), 1547 (m), 1475 (m), 1441 (m), 1394 (m), 1223 (m), 1077 (m), 1026 $(\mathrm{m}), 818(\mathrm{~m}), 786(\mathrm{~m}), 652(\mathrm{~s})$; HRESI-MS (MeOH/acetone) $\mathrm{m} / \mathrm{z}=927.0359$ [6a-SbF $]^{+}$(calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{FeN}_{6} \mathrm{PdSb}$ 927.0327); Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{FeN}_{6} \mathrm{PdSb}_{2} \mathrm{~F}_{12}$: C, 35.13; H, 3.12; $\mathrm{N}, 7.23$. Found: C, 35.24; H, 3.26; N, 7.84.

1.3.6 Synthesis of [Pd(5-ferrocenyl-5'-methyl-2,2'-bipyridine)(DMAP) $\left.\mathbf{2}^{\prime}\right]\left(\mathrm{SbF}_{6}\right)_{2}(6 \mathrm{~b})$

A solution DMAP ($14 \mathrm{mg}, 0.113 \mathrm{mmol}, 2.00$ eq.) in acetone (5 mL) was added to a suspension of $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]\left(15 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) in acetone (5 mL) and stirred for 30 minutes. AgSbF_{6} ($40 \mathrm{mg}, 0.113 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in acetone (5 mL) was added and the solution was stirred for a further 30 minutes before the AgCl precipitate was removed via filtration. $\mathbf{3 b}$ ($20 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in acetone (5 mL) was added and the solution was stirred for 30 minutes. The crude product was obtained by precipitation upon addition of petroleum ether then purified by re-crystallisation from acetone via vapour diffusion of diethyl ether. Finally, after physical separation from a $\left[\mathrm{Pd}(\mathrm{DMAP})_{4}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ impurity $\sim 5 \mathrm{mg}$, the product was isolated as purple needles ($51 \mathrm{mg}, 77 \%$). Mp $>230^{\circ} \mathrm{C}$; IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 1618(\mathrm{~m}), 1549(\mathrm{~m}), 1485(\mathrm{~m}), 1443(\mathrm{~m}), 1394(\mathrm{~m}), 1221(\mathrm{~m}), 1073(\mathrm{~m}), 1025(\mathrm{~m})$, $815(\mathrm{~m}), 652$ (s); HRESI-MS (MeOH/acetone) $\mathrm{m} / \mathrm{z}=617.0312$ [6b+Cl-DMAP-2SbF $]^{+}$(calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClFeN}{ }_{4} \mathrm{Pd}$ 617.0392); Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~F}_{12} \mathrm{FeN}_{6} \mathrm{PdSb}_{2}$: $\mathrm{C}, 35.73 ; \mathrm{H}, 3.26 ; \mathrm{N}, 7.14$. Found: C, 35.92; H, 3.33; N, 7.41.

1.3.7 Synthesis of $\left[\operatorname{Pd}(5 \text {-ferrocenyl-2,2'-bipyridine })_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ (9a)

3a ($20 \mathrm{mg}, 0.059 \mathrm{mmol}, 2.00$ eq.), $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]\left(6 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.00\right.$ eq.) and $\mathrm{AgSbF}_{6}(20 \mathrm{mg}$, $0.059 \mathrm{mmol}, 2.00$ eq.) were combined in acetone (5 mL) and the resulting solution stirred for 30 minutes. The AgCl precipitate was removed via filtration before the purple product was recovered via precipitation upon addition of ether ($34 \mathrm{mg}, 92 \%$). $\mathrm{Mp}>230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, d_{6}-acetone) $\delta 9.03-8.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 8.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.73-8.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 8.68-8.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 8.62-$ $8.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 8.55-8.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 8.03-7.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.18$ $\left(\mathrm{s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-acetone) $\delta 160.5,155.9,153.3,152.1,148.1,143.1,138.6,128.3$, 124.9, 124.6, 78.9, 72.4, 71.2, 68.3; IR: v (cm^{-1}) 1603 (w), 1440 (w), 787 (m), 655 (s); HRESI-MS $(\mathrm{MeOH}) m / z=1022.9277\left[9 a-\mathrm{SbF}_{6}\right]^{+}$(calc. for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~F}_{6} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{PdSb}$ 1022.9316), $m / z=445.9719$ [9a-FcBipy- $\left.2 \mathrm{SbF}_{6}\right]^{+}$(calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeN}_{2} \mathrm{Pd} 445.9703$); UV-Vis (acetone) $\lambda_{\max }\left(\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$: 333 (35700), 542 (6000); Anal. Calc. for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{PdSb}_{2} \mathrm{~F}_{12}$: C, 38.18; H, 2.56; N, 4.45. Found: C, 39.94; H, 2.20; N, 4.49.

Figure S15 ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, d_{6}$-acetone) of 9a.

Figure S16 ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, d_{6}$-acetone) of 9 a.

1.4 Copper(I) Complexation

1.4.1 $\left[\mathrm{Cu}\left(6,6^{\prime}\right.\right.$-dimesityl-2,2'-bipyridine) $\left.(\mathrm{MeCN})_{2}\right] \mathrm{PF}_{6}(10 \mathrm{Cu})$

The synthesis of this compound has previously been reported by Schmittel in quantitative yield. ${ }^{2}$

To a solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}\left(24 \mathrm{mg}, 0.064 \mathrm{mmol}, 1.00\right.$ eq.) in $\mathrm{CD}_{3} \mathrm{CN}(0.75 \mathrm{~mL})$ was added a solution of 7 ($25 \mathrm{mg}, 0.064 \mathrm{mmol}, 1.00$ eq.) in $\mathrm{CD}_{3} \mathrm{CN}(0.75 \mathrm{~mL})$. The mixture was stirred for 15 minutes, the resulting yellow solution subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy and mass spectrometry, and the complex was found to form in quantitative yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.34(\mathrm{~d}, J=8.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 8.15\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.52\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 6.94\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 2.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$, 1.91 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$). HRESI-MS (MeOH): $\mathrm{m} / \mathrm{z}=496.1739$ [10Cu-MeCN-PF $]^{+}$(calc. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{CuN}_{3}$ 496.1809), $m / z=473.1610\left[10 \mathrm{Cu}-2 \mathrm{MeCN}^{2} \mathrm{PF}_{6}+\mathrm{H}_{2} \mathrm{O}\right]^{+}$(calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{OCuN}_{2} 473.1649$), $\mathrm{m} / \mathrm{z}=$ 455.1491 [10Cu-MeCN-PF $]_{6}{ }^{+}$(calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{CuN}_{2} 455.1543$).

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of $\mathbf{1 0 C u}$.

1.4.2 [Cu(6,6'-dimesityl-2,2'-bipyridine)(5-ferrocenyl-2,2'-bipyridine)]PF ${ }_{6}$ (11a)

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(22 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.00$ eq.) was dissolved in acetone $(3 \mathrm{~mL})$ and $10(23 \mathrm{mg}$, $0.059 \mathrm{mmol}, 1.00 \mathrm{eq}$.), also dissolved in acetone (3 mL), was added. The mixture was stirred for 15 minutes to give a yellow solution. $3 \mathrm{a}(20 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in acetone $(3 \mathrm{~mL})$ and added to this solution. The mixture was stirred for a further 15 minutes, then filtered through a cotton wool plug and vapour diffused (acetone/petrol) in order to obtain dark orange crystals ($45 \mathrm{mg}, 82 \%$). $\mathrm{Mp}>230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.49\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right), 8.23$ (t, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{l}}\right), 8.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.05\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 7.98\left(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right)$, 7.93 - $7.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{f} / \mathrm{g} / \mathrm{h}}\right), 7.48\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 7.33\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 6.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{q}}\right.$ or $\left.\mathrm{H}_{\mathrm{o}}\right)$, $6.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{q}}\right.$ or $\left.\mathrm{H}_{\mathrm{o}}\right), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) .4 .47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.10\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right), 1.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right.$ or H_{n}), $1.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right.$ or H_{n}); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-acetone) $\delta 159.3,153.3,152.2,149.3,149.1$, $145.9,139.5,139.4,138.5,138.1,138.0,135.6,135.5,134.5,128.1,128.0,127.9,125.8,121.3$, 121.1, 121.0, 80.5, 71.2, 10.6, 67.5, 20.8, 20.6, 20.4; IR: v (cm ${ }^{-1}$) 2917 (w), 1592 (m), 1559 (m), 829 (s), 555 (s); HRESI-MS (MeOH): $m / z=795.2176$ [11a-PF $]^{+}$(calc. for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{CuFeN}_{4} 795.2208$); UV-Vis (acetone) $\lambda_{\max }\left(\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right): 327$ (29800), 394 (4900), 479 (7500); Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{CuFeN}_{4} \mathrm{PF}_{6}$: C, 61.25; H, 4.71; N, 5.95. Found: C, 61.07; H, 4.70; N, 5.88.

Figure $\mathbf{S 1 8} \mathbf{1 8}^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11a.

Figure $\mathbf{S 1 9}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, d_{6}$-acetone) of 11a.

1.4.3 [Cu(6,6'-dimesityl-2,2'-bipyridine)(5-ferrocenyl-5'-methyl-2,2'-bipyridine)]PF ${ }_{6}$ (11b)

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$ ($21 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in acetone (3 mL) and $10(22 \mathrm{mg}, 0.056$ $\mathrm{mmol}, 1.00$ eq.), also dissolved in acetone (3 mL), was added. The mixture was stirred for 15 minutes to give a yellow solution. 3 b ($20 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in acetone (3 mL) and added to this solution. The mixture was stirred for 15 minutes, then filtered through a cotton wool plug and vapour diffused (acetone/petrol) in order to obtain dark orange crystals ($44 \mathrm{mg}, 82 \%$). Mp $>230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{k}}\right), 8.23\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{d}}\right), 7.94\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 7.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{j}}\right), 7.76-7.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{f} / \mathrm{g} / \mathrm{h}}\right), 7.50\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right)$, $6.13\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{q} / \mathrm{o}}\right) .4 .70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 4.11\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 1.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{p}}\right)$, $1.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right.$ or $\left.\mathrm{H}_{\mathrm{n}}\right), 1.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{r}}\right.$ or $\left.\mathrm{H}_{\mathrm{n}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}$-acetone) $\delta 159.3,153.2,149.8$, $149.4,149.3,145.8,139.4,138.9,138.5,138.2,138.1,136.0,135.6,135.5,134.4,128.0,127.9$, 127.9, 121.0, 120.9, 120.7, 80.7, 71.1, 70.6, 67.4, 20.8, 20.6, 20.3, 18.1; IR: v (cm^{-1}) 2921 (w), 1482 (m), 1408 (m), $834(\mathrm{~s}), 759(\mathrm{~m}), 731(\mathrm{~m})$; HRESI-MS (MeOH): $\mathrm{m} / \mathrm{z}=809.2398$ [11b-PF $\left.{ }^{2}\right]^{+}$(calc. for $\mathrm{C}_{49} \mathrm{H}_{46} \mathrm{CuFeN}_{4} 809.2364$); UV-Vis (acetone) $\lambda_{\max }\left(\varepsilon / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$: 329 (25200), 394 (5700), 473 (8600); Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{46} \mathrm{CuFeN}_{4} \mathrm{PF}_{6}$: C, 61.61; H, 4.85; N, 5.66. Found: C, 61.61; H, 5.04; N, 5.68.

Figure $\mathbf{S 2 0}{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 b}$.

Figure $\mathbf{S 2 1}{ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, d_{6}$-acetone) of $\mathbf{1 1 b}$.

2 Pertinent ${ }^{\mathbf{1}} \mathrm{H}$ NMR Stackplots

a)

DMSO

Figure S22 Stacked ${ }^{1} \mathrm{H}$ NMR spectra (d_{6}-DMSO, 298 K) of a) the free ligand $\mathbf{3 b}$ and \mathbf{b}) the PdCl_{2} complex $\mathbf{4 b}$.

Figure S23 Stacked ${ }^{1} \mathrm{H}$ NMR spectra (d_{6}-acetone, 298 K) of a) the free ligand $\mathbf{3 b}$, b) the PdPy_{2} complex $\mathbf{5 b}$, and c) pyridine.

Figure S24 Stacked ${ }^{1} \mathrm{H}$ NMR spectra (d_{6}-acetone, 298 K) of a) 3a, b) $\left[\mathrm{Pd}\left(\mathrm{FcBipy}_{2}\right]\left(\mathrm{SbF}_{6}\right)_{2}(9 \mathrm{a}), \mathrm{c}\right)$ the mixture of products resulting from the dissolution of $6 \mathrm{a}, \mathrm{d})\left[\mathrm{Pd}(\mathrm{DMAP})_{4}\right]\left(\mathrm{SbF}_{6}\right)_{2}(8)$, and e) DMAP.

Figure S25 Stacked ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of a) the free ligand $\left.\mathbf{3 a}, \mathrm{b}\right)$ the $\mathrm{Cu}(\mathrm{I})$ complex $\mathbf{1 1 b}$, and c) the ligand 10.

3 Representative Mass Spectra

Figure S26 Full mass spectrum (MeOH) of ligand $\mathbf{3} \mathbf{b}$ with relevant peaks annotated.

Figure S27 The calculated (red trace) and experimental (black trace) isotope patterns for a) $\left.[\mathbf{3 b}+\mathrm{H}]^{+}, \mathbf{b}\right)[\mathbf{3 b}+\mathrm{Na}]^{+}$, and c) $\left[3 \mathbf{b}_{2}+\mathrm{Na}\right]^{+}$.

Figure S28 Full mass spectrum (MeOH /acetone) of complex $\mathbf{5 a}$ with relevant peaks annotated.

Figure S29 The calculated (red trace) and experimental (black trace) isotopic pattern of [5a-SbF $\left.\mathbf{6}_{6}\right]^{+}$.

Figure S30 Full mass spectrum (MeOH /acetone) of complex $\mathbf{6 a}$ with relevant peaks annotated.

Figure S31 The calculated (red trace) and experimental (black trace) isotope patterns for a) [6a-SbF $\left.{ }_{6}\right]^{+}$, b) $\left[\mathrm{Pd}(\mathrm{DMAP})_{4} \mathrm{SbF}_{6}\right]^{+}$, and c) $\left[\mathrm{Pd}(\mathrm{FcBipy})_{2} \mathrm{OH}\right]^{+}$.

Figure S32 Full mass spectrum ($\mathrm{MeOH} /$ acetone) of complex 9 a with relevant peaks annotated.

Figure S33 The calculated (red trace) and experimental (black trace) isotope patterns for a) $\left[9 \mathrm{a}-\mathrm{SbF}_{6}\right]^{+}$, and b) $\left[9 \mathrm{a}-2 \mathrm{SbF}_{6}\right]^{2+}$.

Figure S34 Full mass spectrum (MeOH) of complex 11b with relevant peaks annotated.

Figure S35 The calculated (red trace) and experimental (black trace) isotopic pattern of [11b-PF $\left.{ }_{6}\right]^{+}$.

Figure S36 UV-Vis spectra of the FcBipy ligands $\mathbf{3 a}$ and $\mathbf{3 b}$ in acetone $\left(\sim 1 \times 10^{-5} \mathrm{M}\right)$.

Figure S37 UV-Vis spectra of the $\operatorname{Pd}(I I)$ complexes $\mathbf{5 a}, \mathbf{5 b}$, and $9 \mathbf{a}$ in acetone $\left(\sim 1 \times 10^{-5} \mathrm{M}\right)$.

Figure S38 UV-Vis spectra of the $\mathrm{Cu}(\mathrm{I})$ complexes 11a and 11 b in acetone $\left(\sim 1 \times 10^{-5} \mathrm{M}\right)$.

5 Electrochemistry

Cyclic voltammetric (CV) experiments on 3-ferrocenylpyridine ${ }^{3}$ and selected bipyridyl complexes in acetone were performed at $20^{\circ} \mathrm{C}$ on solutions degassed with argon. A three-electrode cell was used with Cypress Systems 1.4 mm diameter glassy carbon working, $\mathrm{Ag} / \mathrm{AgCl}$ reference and platinum wire auxiliary electrodes. The solution was $\sim 10^{-3} \mathrm{M}$ in electroactive material and contained 0.1 M $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte. Voltammograms were recorded with the aid of a Powerlab/4sp computer-controlled potentiostat. Potentials are referenced to the reversible formal potential (taken as $E^{\circ}=0.00 \mathrm{~V}$) for the decamethylferrocene $\left[\mathrm{Fc}^{*}\right]^{+/ 0}$ process. ${ }^{4}$ Under the same conditions, E° calculated for $[\mathrm{FcH}]^{+/ 0}$ was $0.49 \mathrm{~V} .{ }^{5}$

Table S1 Additional electrochemical data for 3a-11b.

Compounds	$E^{\circ}(\mathrm{V})(\mathrm{MeCN})^{\mathrm{a}}$		$E^{\circ}(\mathrm{V})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{\text {a }}$	
	$\mathrm{Cu}^{1 / 1}$	$\mathrm{Fc}^{+/ 0}$	$\mathrm{Cu}^{11 / 1}$	$\mathrm{Fc}^{+/ 0}$
3-Fcpy	-	$0.58(5)^{3}$	-	$0.64{ }^{3}$
3a	-	0.59	-	0.64
3b	-	0.58(5)	-	0.63(5)
5a	-	0.73	-	insol.
5b	-	0.72	-	insol.
11a	0.56	0.73	0.71	0.78
11b	0.55	0.72	0.71	0.77
[Cu(bipy $\left.\left.(\mathrm{Mes})_{2}\right) \mathrm{bipy}\right] \mathrm{BF}_{4}$	-	-	$0.73{ }^{6}$	-

${ }^{\text {a }} 1 \times 10^{-3} \mathrm{M}$ in analyte, $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$, referenced to $\left[\mathrm{Fc}^{*}\right]^{+/ 0}=0.00 \mathrm{~V}$.

5.1 Representative Voltammograms

Figure S39 CV (black trace, $100 \mathrm{mV} \mathrm{s}^{-1}$) and DPV (red trace) of the ligand $\mathbf{3 b}$ in acetone.

Figure $\mathbf{S} 40 \mathrm{CVs}\left(100 \mathrm{mV} \mathrm{s}^{-1}\right)$ of the ligand $\mathbf{3 b}$ and the $\mathrm{Pd}(I I)$ complex $\mathbf{5 b}$ in acetone.

Figure S41 CVs (100 mV s$\left.{ }^{-1}\right)$ of the $\operatorname{Pd}(I I)$ complex 5a and the $\mathrm{Pd}(I I)$ complex 9a in acetone.

Figure S42 CVs (100 mV s$\left.{ }^{-1}\right)$ of the ligand $\mathbf{3 b}$ and the $\mathrm{Cu}(1)$ complex 11b in acetone.

Figure S43 Full sweep CV (100 mV sis of the Cu(I) complex 11b (black trace) and the DPV of the oxidation area of interest (red trace) in acetone.

6 X-ray Data

6.1 Crystallographic Data Tables

Compound	3a	3a	4b
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeN}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FeN}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{FeN}_{2} \mathrm{Pd}$
Formula weight	340.20	340.20	531.55
Temperature	93(2) K	90(2) K	89(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	Pcan	$P 2_{1} / \mathrm{c}$
Unit cell dimensions	$\begin{array}{ll} a=10.186(2) \AA & \alpha=90^{\circ} \\ b=12.531(3) \AA & \beta=92.469(7)^{\circ} \\ c=11.828(2) \AA & \gamma=90^{\circ} \end{array}$	$\begin{array}{\|ll} \hline a=13.0963(23) \AA & \alpha=90^{\circ} \\ b=20.1531(35) \AA & \beta=90^{\circ} \\ c=11.7129(24) \AA & \gamma=90^{\circ} \end{array}$	$\begin{array}{ll} a=16.5082(5) \AA & \alpha=90^{\circ} \\ b=7.4003(2) \AA & \beta= \\ 113.5980(10)^{\circ} & \\ c=16.7660(5) \AA & \gamma=90^{\circ} \end{array}$
Volume	1508.3(5) Å 3	3091.4(9) ${ }^{\text {A }}$	1876.95(9) ${ }^{\text {A }}{ }^{\text {a }}$
Z	4	8	4
Density (calculated)	$1.498 \mathrm{Mg} / \mathrm{m}^{3}$	$1.462 \mathrm{Mg} / \mathrm{m}^{3}$	$1.888 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.000 \mathrm{~mm}^{-1}$	$0.975 \mathrm{~mm}^{-1}$	$2.024 \mathrm{~mm}^{-1}$
F(000)	704	1408	1056
Crystal size	$0.41 \times 0.24 \times 0.08 \mathrm{~mm}^{3}$	$0.39 \times 0.26 \times 0.09 \mathrm{~mm}^{3}$	$0.34 \times 0.24 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	3.05 to 22.89°	2.54 to 22.25°	1.35 to 26.46°
Index ranges	$-11<=h<=11,-13<=k<=13,-10<=\mid<=12$	$-13<=h<=12,-21<=k<=21,-12<=1<=12$	$-20<=h<=20,-9<=k<=6,-21<=1<=20$
Reflections collected	11348	12480	13161
Independent reflections	2057 [R (int) $=0.0510$]	$1959[\mathrm{R}$ (int) $=0.0518]$	$3844[\mathrm{R}$ (int) $=0.0340]$
Completeness	99.2% (theta $=22.89^{\circ}$)	99.8% (theta $=22.25^{\circ}$)	99.2% (theta $=26.46^{\circ}$)
Max. and min. transmission	0.9243 and 0.6847	0.92 and 0.6469	0.6876 and 0.5461
Data / restraints / parameters	2057 / 0/208	1959 / 0 / 208	3844/0/245
Goodness-of-fit on F^{2}	1.124	1.087	1.218
Final R indices [l>2sigma(l)]	R1 $=0.0577$, wR2 $=0.1847$	R1 $=0.0320, w R 2=0.0840$	R1 $=0.0271$, wR2 $=0.0752$
R indices (all data)	$\mathrm{R} 1=0.0660, \mathrm{wR2}=0.1929$	$\mathrm{R} 1=0.0369, \mathrm{wR2}=0.0885$	R1 $=0.0337, w R 2=0.0922$
Largest diff. peak and hole	1.700 and $-0.480 \mathrm{e} . \mathrm{A}^{-3}$	0.262 and -0.422 e. A^{-3}	0.570 and -0.556 e..$^{-3}$

Compound	5a	6a	6b
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{FeN}_{4} \mathrm{PdSb}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{12} \mathrm{FeN}_{8} \mathrm{PdSb}_{2}$	$\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~F}_{12} \mathrm{FeN}_{7} \mathrm{PdSb}_{2}$
Formula weight	1076.30	1244.55	1217.52
Temperature	89(2) K	89(2) K	90(2) K
Wavelength	0.71073 Å	0.71069 Å	0.71073 Å
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	C2/c	$P-1$	$P-1$
Unit cell dimensions	$\begin{array}{ll} a=31.201(4) \AA & \alpha=90^{\circ} \\ b=11.3669(11) \AA & \beta=95.873(4)^{\circ} \\ c=19.088(2) \AA & \gamma=90^{\circ} \end{array}$	$\begin{array}{ll} a=11.635(2) \AA & \alpha=67.083(7)^{\circ} \\ b=13.391(2) \AA & \beta=84.398(7)^{\circ} \\ c=15.929(2) \AA & \gamma=82.022(7)^{\circ} \end{array}$	$\begin{array}{ll} a=10.353(7) \AA & \alpha=73.09(3)^{\circ} \\ b=14.768(9) \AA & \beta=73.84(3)^{\circ} \\ c=15.121(10) \AA & \gamma=74.59(3)^{\circ} \end{array}$
Volume	6734.2(12) A 3	2261.2(6) A 3	2081(2) \AA^{3}
Z	8	2	2
Density (calculated)	$2.123 \mathrm{Mg} / \mathrm{m}^{3}$	$1.828 \mathrm{Mg} / \mathrm{m}^{3}$	$1.943 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.631 \mathrm{~mm}^{-1}$	$1.975 \mathrm{~mm}^{-1}$	$2.143 \mathrm{~mm}^{-1}$
F(000)	4128	1216	1188
Crystal size	$0.22 \times 0.21 \times 0.05 \mathrm{~mm}^{3}$	$0.78 \times 0.24 \times 0.08 \mathrm{~mm}^{3}$	$0.20 \times 0.17 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.31 to 26.51°	2.64 to 25.5°	1.44 to 21.92°
Index ranges	-39<=h<=38, $0<=k<=14,0<=1<=23$	-14<=h<=14, -16<=k<=16, -17<=\|<=19	$-10<=h<=10,-15<=k<=14,-15<=\mid<=15$
Reflections collected	13014	32184	17648
Independent reflections	13014 [R(int) $=0.0000$]	8362 [R (int) $=0.0322$]	4754 [R(int) $=0.0693]$
Completeness	99.0\% (theta $=26.51^{\circ}$)	99.4\% (theta $=25.5^{\circ}$)	94.0\% (theta $=21.9^{\circ}$)
Max. and min. transmission	0.8841 and 0.5952	0.857 and 0.578	0.9004 and 0.6739
Data / restraints / parameters	13014 / 0 / 452	8362 / 30 / 609	4754 / 0 / 547
Goodness-of-fit on F^{2}	1.011	1.03	1.071
Final R indices [l>2sigma(I)]	$\mathrm{R} 1=0.0603, \mathrm{wR2}=0.1565$	$\mathrm{R} 1=0.0246, \mathrm{wR2}=0.056$	$\mathrm{R} 1=0.0471, \mathrm{wR} 2=0.1182$
R indices (all data)	R1 $=0.0866, w R 2=0.1693$	R1 $=0.0287, w R 2=0.0589$	R1 $=0.0687, w R 2=0.1282$
Largest diff. peak and hole	1.046 and -1.007e. \AA^{-3}	0.515 and -0.638 e. \AA^{-3}	0.882 and -1.014 e. \AA^{-3}

Compound	11a	11b	7
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{CuF}_{6} \mathrm{FeN}_{4} \mathrm{P}$	$\mathrm{C}_{49} \mathrm{H}_{46} \mathrm{CuF}_{6} \mathrm{FeN} \mathrm{N}_{4} \mathrm{P} \cdot 5.5 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{PdSb}_{2}$
Formula weight	941.23	1054.34	1010.46
Temperature	90(2) K	90(2) K	90(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71069 Å
Crystal system	Monoclinic	Tetragonal	Monoclinic
Space group	$P 2_{1} / n$	$14_{1} / a$	$P 2_{1} / n$
Unit cell dimensions	$\begin{array}{lll} \hline a=12.6769(12) \AA & \alpha=90^{\circ} \\ b=17.8460(16) \AA & \beta=98.382(5)^{\circ} \\ c=18.8833(16) \AA & \gamma=90^{\circ} \\ \hline \end{array}$	$\begin{array}{ll} a=39.118(3) \AA & \alpha=90^{\circ} \\ b=39.118(3) \AA & \beta=90^{\circ} \\ c=12.8349(11) \AA & \gamma=90^{\circ} \end{array}$	$\begin{array}{ll} a=8.745(5) \AA & \alpha=90^{\circ} \\ b=19.021(5) \AA & \beta=98.519(5)^{\circ} \\ c=10.628(5) \AA & \gamma=90^{\circ} \\ \hline \end{array}$
Volume	4226.4(7) \AA^{3}	19640(3) \AA^{3}	1748.3(14) \AA^{3}
Z	4	16	2
Density (calculated)	$1.479 \mathrm{Mg} / \mathrm{m}^{3}$	$1.426 \mathrm{Mg} / \mathrm{m}^{3}$	$1.919 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.951 \mathrm{~mm}^{-1}$	$0.835 \mathrm{~mm}^{-1}$	$2.137 \mathrm{~mm}^{-1}$
F(000)	1936	7927	976
Crystal size	$0.82 \times 0.49 \times 0.08 \mathrm{~mm}^{3}$	$0.90 \times 0.60 \times 0.43 \mathrm{~mm}^{3}$	$0.51 \times 0.32 \times 0.19 \mathrm{~mm}^{3}$
Theta range for data collection	1.58 to 26.42°	1.04 to 26.46°	2.21 to 25.50°
Index ranges	$-15<=\mathrm{h}<=15,-22<=\mathrm{k}<=22,-23<=\mathrm{l}<=23$	$-48<=h<=48,-48<=k<=48,-16<=1<=15$	$-10<=h<=10,-23<=k<=23,-12<=1<=12$
Reflections collected	97906	136258	42952
Independent reflections	8666 [R(int) $=0.0676$]	10065 [R(int) $=0.0731$]	3257 [R (int) $=0.0412$]
Completeness	99.6\% (theta $=26.42^{\circ}$)	99.3\% (theta $=26.46^{\circ}$)	99.8\% (theta $=25.50^{\circ}$)
Max. and min. transmission	0.7454 and 0.6340	0.7195 and 0.5258	0.7464 and 0.5749
Data / restraints / parameters	8666 / 0 / 556	10065 / 0 / 566	3257 / 0/216
Goodness-of-fit on F^{2}	1.071	1.141	1.182
Final R indices [l>2sigma(I]]	R1 $=0.0471$, wR2 $=0.1078$	R1 $=0.0552, w R 2=0.1278$	R1 $=0.0375, w R 2=0.0995$
R indices (all data)	R1 $=0.0577, w R 2=0.1142$	$\mathrm{R} 1=0.0712, \mathrm{wR} 2=0.1331$	$\mathrm{R} 1=0.0406, \mathrm{wR} 2=0.1013$
Largest diff. peak and hole	0.555 and -0.465 e. \AA^{-3}	0.348 and -0.386 e. \AA^{-3}	2.385 and -0.784 e. \AA^{-3}

6.2 Crystal Structures and Relevant Notes

The structures were collected on a Bruker Kappa Apex II area detector diffractometer using monochromated Mo K α radiation at low temperature ($89-93$ K). SADABS ${ }^{7}$ was used for absorption correction. The structures was solved by direct methods using SIR- 97^{8} or X-Seed ${ }^{9}$ and refined against F^{2} using anisotropic thermal displacement parameters for all non-hydrogen atoms using SHELXL-9710 software. Hydrogen atoms were placed in calculated positions and refined using a riding model.

The structure for 5a was found to be a two-component non-merohedral twin, thus the TWINABS function within PLATON was used to give multi-component absorption corrections.

Due to the extent of disordered solvent molecules in the crystal lattice of 11b, the SQUEEZE routine within PLATON was implemented. SQUEEZE details are listed below, beneath the relevant structure, as well as in the relevant CIF.

Figure S44 Mercury ellipsoid plots of $\mathbf{3 a}$ in a) monoclinic and b) orthorhombic polymorphs. Ellipsoids are shown at the 50\% probability level.

Figure S45 a) One of two collected crystal structures of ligand 3a showing ellipsoids at the 50\% probability level, and b) the two structures of 3a overlaid to show the 5.62° difference in torsion angle between the ferrocene and the bipyridine. Hydrogens are omitted for clarity.

Figure S46 Crystal packing of ligand 3a seen down the ' a ' axis in the a) monoclinic, and b) orthorhombic crystal structures.

Figure S47 Mercury ellipsoid plot of 4b. Ellipsoids are shown at the 50\% probability level.
a)

b)

Figure S48 a) Side view of the head-to-tail $\mathbf{4 b}$ dimer with the Pd-Pd metal interaction measured in \AA, and b) the top-down view along the Pd-Pd interaction.

b)

Figure S49 Mercury ellipsoid plots of a) 5a and b) the $\left[\mathrm{Pd}(\mathrm{Py})_{4}\right]^{2+}$ side product 7. Solvent and counterions are omitted for clarity. Ellipsoids are shown at the 50% probability level. 5a was a two-component non-merohedral twin wherein TWINABS was used to give multi-component absorption corrections.

Figure $\mathbf{S 5 0} \pi$-stacking interactions within the extended solid state structure of $\mathbf{5 a}$, with H-centroid distances shown in \AA. Solvent and counterions are omitted for clarity.
a)

b)

Figure S51 Mercury ellipsoid plots of a) 6a and b) 6b. Solvent and counterions are omitted for clarity. Ellipsoids are shown at the 50% probability level.
a)

b)

Figure S52 π-stacking interactions of a) the FcBipy ligand π-surfaces, and b) the interdigitating DMAP ligands within the extended solid state structure of $\mathbf{6 a}$, with H -centroid distances shown in \AA. Solvent and counterions are omitted for clarity.

b)

Figure $\mathbf{S 5 3} \pi$-stacking interactions of a) the FcBipy ligand π-surfaces, and b) the interdigitating DMAP ligands within the extended solid state structure of $\mathbf{6 b}$, with H -centroid distances shown in \AA. Solvent and counterions are omitted for clarity.

Figure S54 Mercury ellipsoid plots of a) 11a and b) 11b. Solvent and counterions omitted for clarity. Ellipsoids are shown at the 50% probability level. 11b was subject to Platon Squeeze, details of which follow.

PLATON SQUEEZE details for 11b

Void number	1	2	3	4	5	6	7	8
Average x	0.000	0.000	0.250	0.250	0.500	0.500	0.750	0.750
Average y	0.250	0.750	0.000	0.500	0.250	0.750	0.000	0.500
Average z	0.625	0.375	0.800	0.191	0.875	0.125	0.690	0.303
Volume	36.8	36.8	771.4	771.4	36.7	36.7	771.3	771.4
Electron count	-3.8	-4.0	220.3	220.1	-4.0	-3.8	220.1	220.3

The packing of the crystal shows sizeable solvent channels containing significant amounts of diffuse electron density, accounted for by disordered solvent which could not be modelled as discrete molecules. As such, PLATON SQUEEZE was employed to calculate the contribution to the diffraction from the solvent channels and thereby produced a set of solvent-free diffraction intensities.
Details
SQUEEZE estimated four 'voids' containing 220 electrons each. This gives a total of 880 electrons. Due to this being a tetragonal space group with 16 asymmetric units per unit cell, this amounts to $880 / 16=55$ electrons per asymmetric unit. This can be accounted for by 5.5 water molecules per asymmetric unit.

7 References

1. S.-H. Kim and R. D. Rieke, Tetrahedron, 2010, 66, 3135-3146.
2. M. Schmittel, A. Ganz, W. A. Schenk and M. Hagel, Z. Naturforsch., B Chem. Sci., 1999, 54, 559-564.
3. J. R. Wright, K. J. Shaffer, C. J. McAdam and J. D. Crowley, Polyhedron, 2012, 36, 73-78.
4. I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters and L. Phillips, J. Phys. Chem. B, 1999, 103, 6713-6722.
5. F. Barrière and W. E. Geiger, J. Am. Chem. Soc., 2006, 128, 3980-3989.
6. M. G. Fraser, H. van der Salm, S. A. Cameron, A. G. Blackman and K. C. Gordon, Inorg. Chem., 2013, 52, 2980-2992.
7. G. M. Sheldrick, SADABS: Program for Absorption Correction, University of Goettingen, Goettingen, Germany, 1996.
8. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115-119.
9. L. J. Barbour, Journal of Supramolecular Chemistry, 2001, 1, 189-191.
10. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
