SUPPORTING INFORMATION

Demonstration of efficient electrochemical biogas reforming in solid oxide electrolyser with titanate cathode

Qingqing Qin,^a Kui Xie,^{a,b} * Haoshan Wei,^a Wentao Qi,^a Jiewu Cui, ^a Yucheng Wu^{a,b} *

^aDepartment of Energy Materials, School of Materials Science and Engineering, Hefei University

of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China

^bKey Laboratory of Advanced Functional Materials and Devices, School of Materials Science and

Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China

*Corresponding: xiekui@hfut.edu.cn

Captions

Figure S1: Schematic of the *in-situ* electrochemical electrochemical biogas reforming in an oxide-ion-conducting solid oxide electrolyzer with the configuration $(La_{0.8}Sr_{0.2})_{0.95}MnO_{3-\delta}/YSZ/La_{0.2}Sr_{0.8}TiO_{3+\delta}$.

Figure S2: The conductivity of LSTO: (a) reduced LSTO in 5% H_2/Ar ; (b) in different oxygen partial pressure at 800 °C.

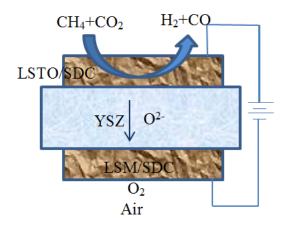
Figure S3: XPS results of La (a) in the oxidized LSTO sample; (b) in the reduced LSTO samples.

Figure S4: The R_p of the symmetric cells with the configuration LSTO-SDC/YSZ/LSM-SDC and iron-loaded LSTO-SDC/YSZ/LSM-SDC tested under different hydrogen partial.

Figure S5: SEM cathode surface of the composite cathode after short-term operation of the electrochemical biogas reforming with LSTO-SDC cathode.

Figure S6: The XRD pattern of Ce_{0.8}Sm_{0.2}O₂₋₈ powder by a heat treatment at 800 °C for 3 h in air.

Figure S7: R_p of the electrolysis cells with cathodes based on LSTO-SDC and iron-loaded LSTO-SDC in 20%CH₄/20%CO₂/60%Ar under different applied potentials at 800 °C.


Figure S8: The conversion of CO_2 and CH_4 : (a) based on LSTO and (b2) based on iron-loaded LSTO in the flow of 20% $CH_4/20\%CO_2/60\%$ Ar at 800 °C.

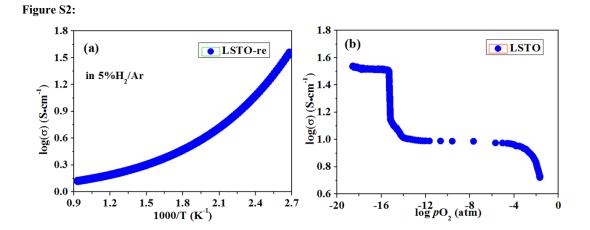

Figure S9: (a) The production of H_2 ; (b) The production of CO with LSTO and iron-loaded LSTO in the flow of 20%CH₄/20%CO₂/60%Ar at 800 °C.

Figure S10: XRD pattern of Fe₂O₃ powder treated at different temperatures from 400-800 °C.

Figure S11: particle size of Fe₂O₃ powder treated at different temperatures from 400-800 °C.

Figure S1:

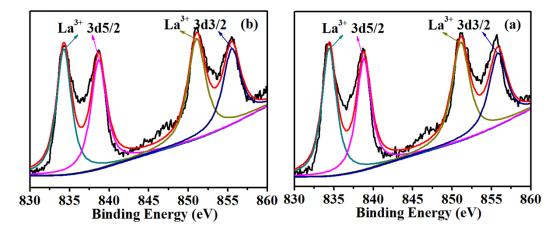
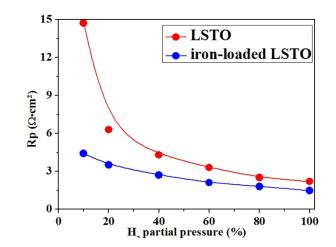



Figure S4:

Figure S5:

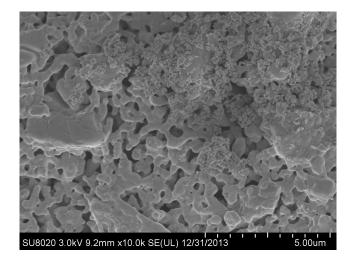
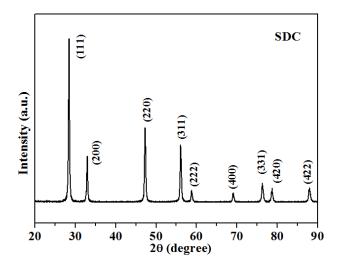
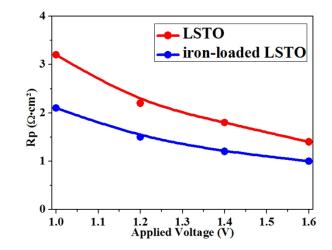
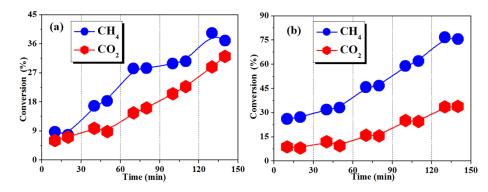
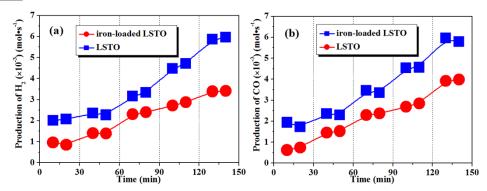
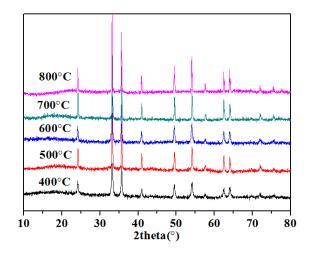


Figure S6:


Figure S7:


<u>Figure S8:</u>

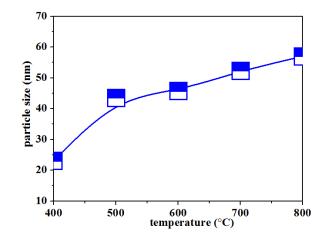

<u>Figure S9:</u>

Figure S10:

Figure S11:

