Contents of Characterization Spectrograms

Fig1. ¹ H NMR of the sample of 4-(2, 2, 6, 6-Tetramethyl-1-oxyl-4-piperidoxyl) butyl	
bromide reduced by phenylhydrazine (CDCl ₃)	2
Fig2. ¹ H NMR of the sample of [Quaternium-TEMPO] ⁺ Br ⁻ reduced by phenylhydrazi	ne
(CDCl ₃)	3
Fig3. ¹³ C NMR of the sample of [Quaternium-TEMPO] ⁺ Br ⁻ reduced by phenylhydrazi	ne
(CDCl ₃)	.4
Fig4. HR-MS (ESI) of [Quaternium-TEMPO] ⁺	5
Fig5. ¹ H NMR of Benzaldehyde (entry 1) (CDCl ₃)	5
Fig6. ¹ H NMR of 4-Methoxybenzaldehyde (entry 2) (CDCl ₃)	6
Fig7. ¹ H NMR of 2-Methoxybenzaldehyde (entry 3) (CDCl ₃)	6
Fig8. ¹ H NMR of 3-Methoxybenzaldehyde (entry 4) (CDCl ₃)	7
Fig9. ¹ H NMR of 4-Methylbenzaldehyde (entry 5) (CDCl ₃)	7
Fig10. ¹ H NMR of 4-Chlorobenzaldehyde (entry 6) (CDCl ₃)	8
Fig11. ¹ H NMR of 2-Chlorobenzaldehyde (entry 7) ((CD ₃) ₂ CO)	8
Fig12. ¹ H NMR of 4-Fluorobenzaldehyde (entry 8) (CDCl ₃)	9
Fig13. ¹ H NMR of 2-Fluorobenzaldehyde (entry 9) (CDCl ₃)	9
Fig14. ¹ H NMR of 3,5-Difluorobenzaldehyde (entry 10) (CDCl ₃)	10
Fig15. ¹ H NMR of Cinnamaldehyde (entry 11) (CDCl ₃)	10
Fig16. ¹ H NMR of 2-Thenaldehyde (entry 12) (CDCl ₃)	11
Fig17. ¹ H NMR of 2-pyridinecarboxaldehyde (entry 13) (CDCl ₃)	11
Fig18. ¹ H NMR of Butanal (entry 14) (CDCl ₃)	12
Fig19. ¹ H NMR of Acetophenone (entry 15) (CDCl ₃)	12
Fig20. ¹ H NMR of 4-Methylacetophenone (entry 16) (CDCl ₃)	13
Fig21. ¹ H NMR of 2-Chloroacetophenone (entry 17) (CDCl ₃)	13
Fig22. ¹ H NMR of 4-Chloroacetophenone (entry 18) ((CD ₃) ₂ SO)	14
Fig23. ¹ H NMR of Cyclohexanone (entry 19) (CDCl ₃)	14
Fig24. ¹ H NMR of 2-Octanone (entry 20) (CDCl ₃)	15
Fig25. ¹ H NMR of 1,2,3,4-Tetrahydro-1-naphthalenone (entry 21) ((CD ₃) ₂ SO)	15

Fig1. ¹H NMR of the sample of 4-(2,2,6,6-Tetramethyl-1-oxyl-4-piperidoxyl) butyl bromide reduced by phenylhydrazine (CDCl₃)

¹H NMR (400 MHz; CDCl₃; Me₄Si) δ: 1.14 (6H, s, Piperidine-Me), 1.20 (6H, s, Piperidine-Me), 1.42 (2H, t, *J* = 11.6 Hz, Piperidine-C*H*H), 1.66-1.70 (2H, m, O-CH₂-C*H*₂-CH₂-CH₂-Br), 1.87-1.94 (4H, m, O-CH₂-CH₂-CH₂-CH₂-Br, Piperidine-CH*H*), 3.42-3.47 (4H, m, OCH₂, BrCH₂), 3.50-3.57 (1H, m, Piperidine-CH).

Fig2. ¹H NMR of the sample of [Quaternium-TEMPO]⁺Br⁻ reduced by phenylhydrazine (CDCI₃)

¹H NMR (400 MHz; CDCl₃; Me₄Si) δ : 0.88 (3H, t, J = 6.8 Hz, Me), 1.26 (12H, s, Piperidine-Me), 1.28-1.48 (18H, m, N-CH₂-CH₂-(CH₂)₉-CH₃), 1.65-1.88 (8H, m, Piperidine-CH₂, O-CH₂-CH₂-CH₂-CH₂-N, N-CH₂-CH₂-C₉H₁₈-CH₃), 2.00-2.13 (2H, m, O-CH₂-CH₂-CH₂-CH₂-N), 3.35 (6H, s, NMe), 3.43-3.47 (2H, m, N-CH₂-CH₂-C₉H₁₈-CH₃), 3.55 (2H, t, J = 6 Hz, O-CH₂-CH₂-CH₂-CH₂-CH₂-N), 3.63-3.68 (2H, m, OCH₂), 3.71-3.76 (1H, m, Piperidine-CH).

Fig3. ¹³C NMR of the sample of [Quaternium-TEMPO]*Br⁻ reduced by phenylhydrazine (CDCl₃)

¹³C NMR (100MHz, CDCl₃) δ: 14.11 (Me), 19.89 (O-CH₂-CH₂-CH₂-CH₂-CH₂-N), 20.69 (N-CH₂-CH₂-C₈H₁₆-CH₃), 22.64 (N-CH₂-CH₂-C₉H₁₈-CH₃), 22.66 (N-CH₂-CH₂-CH₂-C₈H₁₆-CH₃), 26.22 (O-CH₂-CH₂-CH₂-CH₂-CH₂-N), 26.54 (Piperidine-Me), 29.22, 29.28, 29.41, 29.46, 29.56, 31.85, 31.99 (N-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃), 44.60 (Piperidine-CH₂), 51.26 (NMe), 59.29 (Piperidine-C), 63.50 (N-CH₂-CH₂-CH₂-C₉H₁₈-CH₃), 63.84 (O-CH₂-CH₂-CH₂-CH₂-N), 66.80 (Piperidine-CH),70.71(OCH₂).

*10 2 *ESI Scan (2.196-2.406 min, 14 scans) Frag=175.0V LFL-519.d Subtract (3) 440.4336 9- 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.	ssed 1:29:56 A	Some Ions Miss 11/14/2013 11:	atus	IRM Calibration Status Acquired Time	Sample	SampleType Comment	chen-ms.m	InjPosition ACQ Method	2 LFL-519.d	Inj Vol Data Filename
1 440.4336 0.95 0.9 0.85 0.75 0.7 0.65 0.6 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.					Subtract (3)	75.0V LFL-519.d \$	scans) Frag=	6-2.406 min, 14	SI Scan (2.19	×10 2 +E
0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0							440.4336			1-
0.9 0.85 0.8 0.75 0.75 0.75 0.75 0.65 0.65 0.55 0.5 0.45 0.50 0.5										0.95
0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.5 0.4 0.45 0.4 0.35 0.3 0.35 0.3 0.35 0.3 0.45 0.45 0.4 0.45 0.50 510 520 530 540 550 550 550 550 550 550 550 550 55										0.9
0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.45 0.4 0.35 0.3 0.35 0.3 0.25 0.2 0.15 0.1 0.15 0.15 0.15 0.15 0.15 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2										0.85
0.75 0.75 0.65 0.65 0.55 0.55 0.45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.										0.8-
0.7 0.65 0.6 0.55 0.5 0.5 0.5 0.4 0.45 0.4 0.35 0.3 0.4 0.4 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.4 0.15 0.50 0.50 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.75-
0.65 0.6 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.										0.7
0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.35 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3										0.65-
0.55 0.5 0.45 0.4 0.35 0.3 0.35 0.3 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.6-
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.35 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.35 0.35 0.15										0.55
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.5
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.45
0.35 0.3 0.25 0.2 0.15 0.1 0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.4
0.3 0.25 0.2 0.15 0.1 0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.35
0.25 0.2 0.15 0.1 0.15 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.3
0.2 0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.25
0.15 0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.2
0.1 0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.15-
0.05 0 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.1
0 360 370 380 390 400 410 420 430 450 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)										0.05
360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 Counts (%) vs. Mass-to-Charge (m/z)					······		. Au			0
	,	70 580 590	560 570	530 540 550 56	90 500 510 5 Charge (m/z)	(%) vs. Mass-to-0	0 430 440 4 Coun	90 400 410 42	0 370 380 3	36

Fig4. HR-MS (ESI) of [Quaternium-TEMPO]*

Fig7. ¹H NMR of 2-Methoxybenzaldehyde (entry 3) (CDCl₃)

----0.00

---3.87

8.8 V

F666666666888

Fig9. ¹H NMR of 4-Methylbenzaldehyde (entry 5) (CDCI₃)

Fig10. ¹H NMR of 4-Chlorobenzaldehyde (entry 6) (CDCl₃)

----9.99

Fig12. ¹H NMR of 4-Fluorobenzaldehyde (entry 8) (CDCl₃)

Fig14. ¹H NMR of 3,5-Difluorobenzaldehyde (entry 10) (CDCI₃)

2223 2223

818 V

---0.00

---0.00

Fig16. ¹H NMR of 2-Thenaldehyde (entry 12) (CDCl₃)

Fig17. ¹H NMR of 2-pyridinecarboxaldehyde (entry 13) (CDCl₃)

Fig18. ¹H NMR of Butanal (entry 14) (CDCl₃)

Fig19. ¹H NMR of Acetophenone (entry 15) (CDCI₃)

Fig21. ¹H NMR of 2-Chloroacetophenone (entry 17) (CDCI₃)

Fig22. ¹H NMR of 4-Chloroacetophenone (entry 18) ($(CD_3)_2SO$)

Fig23. ¹H NMR of Cyclohexanone (entry 19) (CDCl₃)

Fig25. ¹H NMR of 1,2,3,4-Tetrahydro-1-naphthalenone (entry 21) ((CD₃)₂SO)

Contents of GC analysis chromatograms

Fig.1 GC chromatogram of Benzyl alcohol during the oxidation reaction (entry 1)1
Fig.2 GC chromatogram of Benzyl alcohol at the end of the oxidation reaction (entry 1)1
Fig.3 GC chromatogram of 4-Methoxybenzyl alcohol during the oxidation reaction (Entry 2)
Fig.4 GC chromatogram of 4-Methoxybenzyl alcohol at the end of the oxidation reaction
(entry 2)
Fig.5 GC chromatogram of 2-Methoxybenzyl alcohol during the oxidation reaction (entry 3)3
Fig.6 GC chromatogram of 2-Methoxybenzyl alcohol at the end of the oxidation reaction
(entry 3)
Fig.7 GC chromatogram of 3-Methoxybenzyl alcohol during the oxidation reaction (entry 4)4
Fig.8 GC chromatogram of 3-Methoxybenzyl alcohol at the end of the oxidation reaction
(entry 4)
Fig.9 GC chromatogram of 4-Methxybenzyl alcohol during the oxidation reaction (entry 5)5
Fig.10 GC chromatogram of 4-Methxybenzyl alcohol at the end of the oxidation reaction
(entry 5)
Fig.11 GC chromatogram of 4-Chlorobenzyl alcohol during the oxidation reaction (entry 6).6
Fig.12 GC chromatogram of 4-Chlorobenzyl alcohol at the end of the oxidation reaction
(entry 6)
Fig 13 GC chromatogram of 2-Chlorobenzyl alcohol during the oxidation reaction (entry 7) 7
Fig 14 GC chromatogram of 2-Chlorobenzyl alcohol at the end of the oxidation reaction
(entry 7) 7
Fig 15 GC chromatogram of 4-Fluorobenzyl alcohol during the oxidation reaction (entry 8) 8
Fig 16 GC chromatogram of 4-Fluorobenzyl alcohol at the end of the oxidation reaction
(entry 8)
Fig 17 GC chromatogram of 2-Fluorobenzyl alcohol during the oxidation reaction (entry 9) 9
Fig 18 GC chromatogram of 2-Fluorobenzyl alcohol at the end of the oxidation reaction
(entry 9)
Fig 19 GC chromatogram of 3 5-Difluorobenzyl alcohol during the oxidation reaction (entry
10)
Fig 20 GC chromatogram of 3.5-Difluorobenzyl alcohol at the end of the oxidation
reaction(entry 10)
Fig 21 GC chromatogram of Cinnamic alcohol during the oxidation reaction (entry 11) 11
Fig.22 GC chromatogram of Cinnamic alcohol at the end of the ovidation reaction (entry 11)
11
Fig 23 GC chromatogram of 2 Thienylmethyl alcohol during the oxidation reaction (entry 12)
12
Fig 24 GC chromotogram of 2 Thienvilmethyl alcohol at the end of the ovidation reaction
(ontry 12)
Fig 25 GC abromatogram of 2 Duridinamethanal during the evidetion reaction (arter: 12) 12
Fig.25 GC chromatogram of 2 Puridinamothanal at the and of the avidation reaction (entry 15)15
12)
13)
rig.27 OC enformatogram of butyr alcohol during the oxidation feaction (entry 14)

Fig.28 GC chromatogram of Butyl alcohol at the end of the oxidation reaction (entry 14)14
Fig.29 GC chromatogram of 1-Phenyl ethanol during the oxidation reaction (entry 15)15
Fig.30 GC chromatogram of 1-Phenyl ethanol at the end of the oxidation reaction (entry 15)
Fig.31 GC chromatogram of 1-(4-Methylphenyl) ethanol during the oxidation reaction (entry
16)
Fig.32 GC chromatogram of 1-(4-Methylphenyl) ethanol at the end of the oxidation reaction (entry 16)
Eig 22 CC sharmeteerer of 1 (2 Chlorebergel) othered during the evidetion resetion (entry
17)
Fig.34 GC chromatogram of 1-(2-Chlorobenzyl) ethanol at the end of the oxidation reaction
(entry 17)
Fig.35 GC chromatogram of 1-(4-Chlorobenzyl) ethanol during the oxidation reaction (entry
18)
Fig.36 GC chromatogram of 1-(4-Chlorobenzyl) ethanol at the end of the oxidation reaction
(entry 18)
Fig.37 GC chromatogram of Cyclohexanol during the oxidation reaction (entry 19)19
Fig.38 GC chromatogram of Cyclohexanol at the end of the oxidation reaction (entry 19)19
Fig.39 GC chromatogram of 2-Octanol during the oxidation reaction (entry 20)20
Fig.40 GC chromatogram of 2-Octanol at the end of the oxidation reaction (entry 20)20
Fig.41 GC chromatogram of 1,2,3,4-Tetrahydro-1-naphthol during the oxidation reaction
(entry 21)
Fig.42 GC chromatogram of 1,2,3,4-Tetrahydro-1-naphthol at the end of the oxidation
reaction (entry 21)

Attention: The first peak in the GC chromatograms below is from the diluent (acetonitrile) in the analysis.

Fig.1 GC chromatogram of Benzyl alcohol during the oxidation reaction (entry 1)

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Fig.3 GC chromatogram of 4-Methoxybenzyl alcohol during the oxidation reaction (Entry 2)

Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

Fig.4 GC chromatogram of 4-Methoxybenzyl alcohol at the end of the oxidation reaction (entry 2) Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

Fig.5 GC chromatogram of 2-Methoxybenzyl alcohol during the oxidation reaction (entry 3)

Column temperature 220 °C, pressure of the carrier gas 0.05Mpa.

Fig.6 GC chromatogram of 2-Methoxybenzyl alcohol at the end of the oxidation reaction (entry 3)

Column temperature 220 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

Fig.8 GC chromatogram of 3-Methoxybenzyl alcohol at the end of the oxidation reaction (entry 4)

Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

Fig.9 GC chromatogram of 4-Methxybenzyl alcohol during the oxidation reaction (entry 5)

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Fig.10 GC chromatogram of 4-Methxybenzyl alcohol at the end of the oxidation reaction (entry 5)

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Fig.11 GC chromatogram of 4-Chlorobenzyl alcohol during the oxidation reaction (entry 6)

Column temperature 200 °C, pressure of the carrier gas 0.07Mpa.

Fig.12 GC chromatogram of 4-Chlorobenzyl alcohol at the end of the oxidation reaction (entry 6)

Column temperature 200 °C, pressure of the carrier gas 0.07Mpa.

Fig.13 GC chromatogram of 2-Chlorobenzyl alcohol during the oxidation reaction (entry 7)

Column temperature 200 °C, pressure of the carrier gas 0.07Mpa.

Fig.14 GC chromatogram of 2-Chlorobenzyl alcohol at the end of the oxidation reaction (entry 7)

Column temperature 200 °C, pressure of the carrier gas 0.07Mpa.

Fig.15 GC chromatogram of 4-Fluorobenzyl alcohol during the oxidation reaction (entry 8)

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Fig.16 GC chromatogram of 4-Fluorobenzyl alcohol at the end of the oxidation reaction (entry 8)

Column temperature 190 °C, pressure of the carrier gas 0.07Mpa.

Column temperature 190 °C, pressure of the carrier gas 0.06Mpa.

Fig.18 GC chromatogram of 2-Fluorobenzyl alcohol at the end of the oxidation reaction (entry 9)

Column temperature 190 °C, pressure of the carrier gas 0.06Mpa.

Fig.19 GC chromatogram of 3,5-Difluorobenzyl alcohol during the oxidation reaction (entry 10)

Column temperature 180 °C, pressure of the carrier gas 0.07Mpa.

Fig.20 GC chromatogram of 3,5-Difluorobenzyl alcohol at the end of the oxidation reaction(entry 10)

Column temperature 180 °C, pressure of the carrier gas 0.07Mpa.

The peaks before that of cinnamaldehyde are from the impurities of cinnamic alcohol, not from oxidation by-products.

Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

The peaks before that of cinnamaldehyde are from the impurities of cinnamic alcohol, not from oxidation by-products.

Column temperature 220 °C, pressure of the carrier gas 0.07Mpa.

Column temperature 180 °C, pressure of the carrier gas 0.05Mpa.

Fig.24 GC chromatogram of 2-Thienylmethyl alcohol at the end of the oxidation reaction (entry 12)

Column temperature 180 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 200 °C, pressure of the carrier gas 0.06Mpa.

Fig.26 GC chromatogram of 2-Pyridinemethanol at the end of the oxidation reaction (entry 13)

Column temperature 200 °C, pressure of the carrier gas 0.06Mpa.

Column temperature 80 °C for nine minutes, and then heated up to 130 for ten minutes, pressure of the carrier gas 0.05Mpa.

Fig.28 GC chromatogram of Butyl alcohol at the end of the oxidation reaction (entry 14)

Column temperature 80 °C for nine minutes, and then heated up to 130 for ten minutes, pressure of the carrier gas 0.05Mpa.

Column temperature 190 °C, pressure of the carrier gas 0.05Mpa.

Fig.30 GC chromatogram of 1-Phenyl ethanol at the end of the oxidation reaction (entry 15)

Column temperature 190 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 190 °C, pressure of the carrier gas 0.05Mpa.

Fig.32 GC chromatogram of 1-(4-Methylphenyl) ethanol at the end of the oxidation reaction (entry 16)

Column temperature 190 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 200 °C, pressure of the carrier gas 0.05Mpa.

Fig.34 GC chromatogram of 1-(2-Chlorobenzyl) ethanol at the end of the oxidation reaction (entry 17)

Column temperature 200 °C, pressure of the carrier gas 0.05Mpa.

Fig.35 GC chromatogram of 1-(4-Chlorobenzyl) ethanol during the oxidation reaction (entry 18)

Column temperature 220 °C, pressure of the carrier gas 0.05Mpa.

Fig.36 GC chromatogram of 1-(4-Chlorobenzyl) ethanol at the end of the oxidation reaction (entry 18)

Column temperature 220 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 130 °C, pressure of the carrier gas 0.05Mpa.

Fig.38 GC chromatogram of Cyclohexanol at the end of the oxidation reaction (entry 19)

Column temperature 130 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 130 °C, pressure of the carrier gas 0.05Mpa.

Fig.40 GC chromatogram of 2-Octanol at the end of the oxidation reaction (entry 20)

Column temperature 130 °C, pressure of the carrier gas 0.05Mpa.

Column temperature 210 °C, pressure of the carrier gas 0.05Mpa.

Fig.42 GC chromatogram of 1,2,3,4-Tetrahydro-1-naphthol at the end of the oxidation reaction (entry 21)

Column temperature 210 °C, pressure of the carrier gas 0.05Mpa.

Effect of temperature on catalytic activity

T(°C)	Time(h)	Conv. ^{<i>b</i>} (%)	Select. ^b (%)	TON ^c	$TOF^{d}(h^{-1})$
80	0.5	>99	>99	39.6	79.2
70	1	>99	>99	39.6	39.6
60	1.5	>99	>99	39.6	26.4
50	2	>99	>99	39.6	19.8
45	2.25	>99	>99	39.6	17.6
40	9	31.5	>99	12.6	1.4
25	1	8.1	>99	3.2	3.2

Table 6. Effect of temperature on the DES-TEMPO/Fe(NO₃)₃ catalyzed aerobic oxidation of benzyl alcohol^a.

^{*a*} Reaction conditions: benzyl alcohol 10 mmol, 1.25%DES-TEMPO, 3%Fe(NO₃)₃, atmospheric oxygen pressure. ^{*b*} Conversions and selectivity were determined by GC (area normalization method). ^{*c*} TON = moles of product/2(moles of DES-TEMPO). ^{*d*} TOF = TON/ reaction time.