Supporting Information

High-performance hydrogen evolution electrocatalysis by layer-controlled MoS₂

nanosheets

Jiao Deng,¹ Wentao Yuan,² Pengju Ren,¹ Yong Wang,² Dehui Deng, ¹* Ze Zhang,² Xinhe Bao¹

¹State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.

²Department of Materials Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, ZheJiang, 310027, China.

*E-mail: dhdeng@dicp.ac.cn; Fax: +86-411-8469 4447; Tel: +86-411-8246 3003.

Experimental Section

Materials preparation.

All the chemicals were of analytical grade and used as received without further purification. Typically, for FL-MoS₂, hexaammonium heptamolybdte tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O, 900 mg) were first dissolved in deionized water (20 mL) to form a homogeneous solution. Then, the solution and carbon disulfide (CS₂, 10 mL) were transferred into a 40 mL stainless steel autoclave under N₂ and maintained at 400 °C for 4 h. The final product was treated with aqueous ammonia under stirring at room temperature for 3 h, followed by washing with water and absolute ethanol for several times and drying at 100 °C. For ML-MoS₂, (NH₄)₆Mo₇O₂₄·4H₂O (3 g) and CS_2 (10 mL) were enclosed into the autoclave under N_2 and followed the same FL-MoS₂. reaction For and treatment process as SL-MoS₂-CNTs, (NH₄)₆Mo₇O₂₄·4H₂O (150 mg) and CNTs (200 mg) were first dispersed in deionized water (20 mL) and CS_2 (10 mL) and then were enclosed into the autoclave under N_2 , also followed the same reaction and treatment process as FL-MoS₂.

Materials characterization.

Scanning electron microscopy (SEM) was conducted on Hitachi S5500 operated at 30 kV. Transmission electron microscopy (TEM) was carried out on a FEI Tecnai F30 microscope and a G² microscope operated at an accelerating voltage of 300 and 120 kV, respectively. High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray (EDX) mapping were carried out on a spherical aberration corrected transmission electron microscope (FEI Titan G2 80-200) which was operated at 200 kV. The scanning transmission electron microscopy (STEM) mode is capable to reach the space resolution to 0.08 nm. In order to guarantee an efficient X-ray collection rate to map the elements of the samples, an advanced ChemiSTEM technology (with four X-ray detectors) was adopted. X-ray diffraction (XRD) measurements were conducted on a Rigaku D/MAX 2500 diffractometer with Cu K α radiation (λ =1.5418 Å) at 40 kV and 200 mA. Raman spectroscopy was performed on a Jobin Yvon LabRAM HR 800 instrument with a 532 nm excitation laser at a power of 0.7 mW.

Electrochemical analysis.

HER polarization curve tests were conducted on a 2273 potentiostat/galvanostat with a three-electrode electrochemical cell equipped with a gas flow controlling system. Graphite rod was used as the counter electrode and Ag/AgCl (saturated KCl-filled) as the reference electrode. A glassy carbon rotating disk electrode with a diameter of 5 mm covered by a thin catalyst film was used as the working electrode. Typically, 5 mg catalyst was suspended in 2 mL ethanol with 50 μ L Nafion solution (5 wt.%, Du Pont) to form a homogeneous ink assisted by ultrasound. Then 125 μ L of the ink was spread onto the surface of glassy carbon by a micropipette and dried under room temperature. The final loading for all catalysts and 40% commercial Pt/C electrocatalysts on work electrode is 1.6 mg/cm². HER tests were conducted in an N₂ saturated 0.1 M H₂SO₄ electrolyte at 25 °C. The potential range was from 0 to -1.0 V (vs. Ag/AgCl) and the scan rate was 2 mV s⁻¹. All the final potentials quoted have been calibrated with respect to a reversible hydrogen electrode (RHE).

All these materials synthesis and the HER performance mentioned above were well reproducible in our laboratory.

Figure S1. (a-c) HRTEM images of FL-MoS₂. (d) Layer number statistics of FL-MoS₂ by HRTEM.

Figure S2. (a-c) HAADF-STEM image of $FL-MoS_2$ and corresponding EDX mapping images of Mo and S, respectively.

Figure S3. (a) TEM image of ML-MoS₂. (b), (c) HRTEM images of ML-MoS₂. (d) Layer number statistics of ML-MoS₂ by HRTEM.

Figure S4. (a-c) HRTEM images of SL-MoS₂-CNTs. The inset in figure b shows a layer distance of 0.62 nm. The red dashed circles in figure a and c show the defects in MoS_2 nanosheets. (d) Layer number statistics of SL-MoS₂-CNTs by HRTEM.

Table S1. Summary of HER overpotential at different current density for SL-MoS2-CNTs, FL-MoS2, ML-MoS2 and bulk MoS2.

Catalyst	Current density (mA cm ⁻²)	Overpotential (vs. RHE)	
SL-MoS ₂ -CNTs	onset	~40 mV	
	1	112 mV	
	5	180 mV	
	10	236 mV	
FL-MoS ₂	onset	~50 mV	
	1	154 mV	
	5	242 mV	
	10	314 mV	
ML-MoS ₂	onset	~110 mV	
	1	206 mV	
	5	342 mV	
	10	454 mV	
bulk MoS ₂	onset	~200 mV	
	1	336 mV	
	5	476 mV	
	10	574 mV	

Catalyst	Catalyst loading (mg/cm ²)	jo (A/cm²)	j₀ (A/cm²) normalized by mass	Reference
MoO ₃ -MoS ₂ nanowires	0.06	0.82 x 10 ⁻⁷	0.14 x 10 ⁻⁵	Nano Lett., 2011, 11, 4168
Amorphous MoS ₃	0.031	8.9 x 10 ⁻⁷	2.87 x 10 ⁻⁵	Chem. Sci., 2012, 3, 2515
Engineered MoS ₂	0.06	6.9 x 10 ⁻⁷	1.15 x 10 ⁻⁵	Nat. Mater., 2012, 11, 963
MoS ₂ /RGO	0.14	12 x 10 ⁻⁵	8.57 x 10 ⁻⁴	Chem. Commun., 2012, 48, 7687
Oxygen-incorporated MoS ₂	0.285	1.26 x 10 ⁻⁵	4.42 x 10 ⁻⁵	J. Am. Chem. Soc., 2013, 135, 17881
MoS ₂ /Graphene	0.21	3 x 10 ⁻⁶	1.43 x 10 ⁻⁵	Adv. Funct. Mater., 2013, 23, 5326
Defect-rich MoS ₂	0.285	8.91 x 10 ⁻⁶	3.13 x 10 ⁻⁵	Adv. Mater., 2013, 25, 5807
SL-MoS ₂ -CNTs	1.6	2 x 10 ⁻⁵	1.25 x 10 ⁻⁵	This work
FL-MoS ₂	1.6	1.8 x 10 ⁻⁵	1.13 x 10 ⁻⁵	This work
ML-MoS ₂	1.6	1.5 x 10 ⁻⁵	0.94 x 10 ⁻⁵	This work

Table S2. The comparison of exchange current densities for various MoS_2 -based HER catalysts.