Supporting Information

2,3-Diaryl-substituted Indole based COX-2 Inhibitors as Leads for Imaging Tracer Development

Authors
Markus Laube ${ }^{1,2}$, Christoph Tondera ${ }^{1,2}$, Sai Kiran Sharma ${ }^{3}$, Nicole Bechmann ${ }^{1,2}$, Franz-Jacob Pietzsch ${ }^{1,4}$, Arne Pigorsch ${ }^{5}$, Martin Köckerling ${ }^{5}$, Frank Wuest ${ }^{3}$, Jens Pietzsch ${ }^{1,2,{ }^{*} \text {, Torsten }}$ Kniess ${ }^{1, *}$

Affiliations

${ }^{1}$ Department Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
${ }^{2}$ Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062
Dresden, Germany
${ }^{3}$ Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
${ }^{4}$ Centre for Translational Bone, Joint, and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität, Dresden, 01307 Dresden, Germany
${ }^{5}$ Department of Inorganic Solid State Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
*Corresponding authors: J. Pietzsch and T. Kniess

Crystal structure of compound 5c

Compound 5c crystallized in the triclinic space group P1 with one molecule in the asymmetric unit and two molecules in the unit cell (table S1). The crystal structure of $\mathbf{5 c}$ is in accordance with the spectroscopic data (figure S1).

Table S1. Crystal data and parameters for structure refinement of 5 c .

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{~S}$	
Formula weight	292.31	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	$P \overline{1}$	
Unit cell dimensions	$a=5.5241(2) \AA$	$\alpha=82.578(1)^{\circ}$
	$b=8.5534(2) \AA$	$\beta=88.938(1)^{\circ}$
	$c=14.6136(4) \AA$	$\gamma=72.577(1)^{\circ}$
Volume	653.14(3) \AA^{3}	
Z	2	
Density (calculated)	$1.486 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.264 \mathrm{~mm}^{-1}$	
F(000)	304	
Crystal size	$0.35 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$	
Theta range for data collection	1.41 to 38.33°.	
Index ranges	$-9 \leq \mathrm{h} \leq 9,-14 \leq \mathrm{k} \leq 14,-25 \leq \mathrm{l} \leq 23$	
Reflections collected	33122	
Independent reflections	7225, $\mathrm{R}_{\text {int }}=0.0483$	
Absorption correction	Multiscan (SADABS)	
Max. and min. transmission	0.9741 and 0.9133	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	7225 / 0 / 182	
Goodness-of-fit on F^{2}	1.042	
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0419, w R 2=0.1100$	
R indices (all data)	$\mathrm{R} 1=0.0601, w R 2=0.1216$	
Largest diff. peak and hole	0.487 and -0.419 e \AA^{-3}	

Figure S1. Molecular structure of compound 5c in the crystal (ORTEP plot: displacement thermal ellipsoids are drawn at 50\% probability level)

The bond lengths of the C-C single bonds $[\mathrm{d}=1.494-1.519 \AA$] and of the $\mathrm{C}=\mathrm{O}$ double bond ($\mathrm{d}=1.217$ (1) \AA) as well as the bond lengths in the two phenyl rings [$\mathrm{d}=1.380-1.397 \AA$] are comparable to those described by Rieker ${ }^{1}$ for 2-phenylacetophenone. In difference to this molecule, the bond angles in the fluoro-substituted phenyl ring of $5 \mathrm{c}\left[\theta=117.74-123.26^{\circ}\right]$ deviate from the ideal 120° of benzene. However, the bond lengths and angles of the phenyl
ring as well as the bond lengths of C1-F1 ($\mathrm{d}=1.348(1) \AA$) are still in the expected range and a similar binding situation was observed for 4-fluoroacetophenone. ${ }^{2}$ The bond lengths of the C-S single bonds $(\mathrm{d}(\mathrm{C} 16-\mathrm{S} 1)=1.760(1)$ and $\mathrm{d}(\mathrm{C} 12-\mathrm{S} 1)=1.7654(9) \AA$) as well as the S-O double bonds $(\mathrm{d}(\mathrm{S} 1-\mathrm{O} 2)=1.43282(8)$ and $\mathrm{d}(\mathrm{S} 1-\mathrm{O} 3)=1.4423(9) \AA$) are also in the expected range and are comparable to those in 4-(Methylsulfonyl)toluene. ${ }^{3}$ Interestingly, the molecular geometry is also very similar to that of 2-phenylacetophenone. The plane of the fluorosubstituted phenyl ring and the plane of the ethanone subunit (C8-C7-O1) are only very little twisted to each other and enclose an angle of 2.41°. In contrast, the plane of the methylsulfonyl substituted phenyl ring is twisted to the plane of the ethanone subunit with an angle of 62.84°. In 2-phenylacetophenone, the respective angles are -8.2° and 72.3°. ${ }^{1}$

Figure S2. Intermolecular interactions between molecules of 5 c in the crystal (view along the crystallographic b-axis, distances given in \AA).

Table S2. Interatomic distances and geometries for intermolecular contacts of compound 5 c in the crystal

Atoms	r/A	d/A	D / A	$\underset{\text { offset }}{D_{\text {lateral }}}$	Dihedral angle 1°	$\theta /^{\circ}$	Symmetry operation
C2-H2 \cdots F1	0.95	2.54	3.163(1)	-	-	123	-1-x,3-y, 1-z
C16-H16A $\cdots 3$	0.98	2.61	3.563(1)	-	-	165	$1-x,-y,-z$
C16-H16B - 03	0.98	2.36	3.279(1)	-	-	155	$1+x, y, z$
$\mathrm{Z}_{\text {F-Phenyl }} \cdots \mathrm{Z}_{\mathrm{F} \text {-Phenyl }}$	-	$3.8075(6)$	-	1.603	0	-	-X,2-Y,1-Z
$\mathbf{Z}_{\text {F-Pheny }}{ }^{\cdots} \mathbf{Z}_{\text {So }}$--Phenyl	-	$4.6456(6)$	-	-	60.62(4)	-	$-1+X, 1+Y, Z$
$\mathrm{Z}_{\text {F-Pheny }}{ }^{1} \cdots \mathrm{Z}_{\text {So2-Phenyl }}$	-	$5.0763(6)$	-	-	$60.62(4)$	-	$X,-1+Y, Z$
C16-H16C $\cdots \mathrm{Z}_{\mathrm{SO}_{2}-}$ Phenyl	-	2.84	3.466(1)	${ }^{-}$	-	132	1-X,1-Y,-Z
	$\mathbf{Z}_{\text {F-Phenyl }} \ldots$ Centroid of C1-C6; $\mathbf{Z}_{\text {SO2-Phenyl }}$... Centroid of C9-C14						

The two molecules of the unit cell do not interact with each other. On the one hand, $\pi \cdots \pi-$ interactions determine the packing in the plane ($1,0,0$). So, anti-parallel positioned fluorosubstituted phenyl rings can be found that interact with a distance between the centroids (Z) of $d\left(Z_{F-\text { Phenyl }} \cdots Z_{F-P h e n y l}\right)=3.808 \AA$. Also, interactions between edge-to-face positioned fluoro and methylsulfonyl substituted phenyl rings $\left(\mathrm{d}\left(\mathrm{Z}_{\text {SO2-Pheny1 }} \cdots \mathrm{Z}_{\mathrm{F} \text {-Pheny }}\right)=4.646 \AA\right.$, dihedral angle 60.62°) stabilize the packing in this plane (figure S2). On the other hand, weak hydrogen bonds and dipolar interactions are involved in the intermolecular interactions in this plane. Weak hydrogen bonds are formed between the fluoro substituted phenyl rings ($\mathrm{d}(\mathrm{C} 2-$ $\mathrm{H} 2 \cdots \mathrm{~F} 1$) $=2.539 \AA$) and a stabilizing dipolar $\mathrm{S}=\mathrm{O} \cdots \mathrm{C}=\mathrm{O}$-interactions ($\mathrm{d}(\mathrm{S} 1-\mathrm{O} 2 \cdots \mathrm{C} 7-$ $\mathrm{O} 1)=3.081(1) \AA$ and $\left.\theta(\mathrm{O}-\mathrm{S}-\mathrm{O})=87.39(6)^{\circ}\right)$ is present. Along the c -axis, the molecules of neighboring unit cells interact by further weak hydrogen bonds between the methylsulfonylmoieties $(\mathrm{d}(\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 3)=2.3624(8) \AA$ and $\mathrm{d}(\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O} 3)=2.6085(8) \AA$) as well as $\mathrm{C}-\mathrm{H} \cdots \mathrm{m}$-interactions with a distance of $\mathrm{d}\left(\mathrm{C} 16-\mathrm{H} 16 \mathrm{C} \cdots \mathrm{Z}_{\mathrm{SO}_{2}-\text { Phenyl }}\right)=2,838 \AA$.

Crystal structure of compound 3j

Compound $3 \mathbf{j}$ crystallized in the monoclinic space group $P 2_{1} / \mathrm{c}$ with one molecule in the asymmetric unit and four molecules in the unit cell (table S3). The crystal structure of $\mathbf{3 j}$ is in accordance with the spectroscopic data (figure S3).

Table S3. Crystal data and parameters for structure refinement of $\mathbf{3 j}$.

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}$	
Formula weight	377.44	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P 2_{1} / \mathrm{C}$	
Unit cell dimensions	$a=11.6987(6) \AA$	$\alpha=90^{\circ}$
	$b=18.059(1) \AA$	$\beta=110.647(2)^{\circ}$
	$c=9.5364(5) \AA$	$\gamma=90^{\circ}$
Volume	1885.3(2) \AA^{3}	
Z	4	
Density (calculated)	$1.330 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.194 \mathrm{~mm}^{-1}$	
F(000)	792	
Crystal size	$0.35 \times 0.26 \times 0.15 \mathrm{~mm}^{3}$	
Theta range for data collection	2.92 to $39.46{ }^{\circ}$.	
Index ranges	$-20 \leq h \leq 20,-32 \leq k \leq 32,-17 \leq \mathrm{l} \leq 17$	
Reflections collected	54915	
Independent reflections	11261, $\mathrm{R}_{\text {int }}=0.0239$	
Absorption correction	multi-scan (SADABS)	

Table S3 continued. Crystal data and parameters for structure refinement of $\mathbf{3 j}$.

Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I]]
R indices (all data)
Largest diff. peak and hole
0.9715 and 0.9352

Full-matrix least-squares on F^{2}
11261 / 0 / 246
1.043
$R 1=0.0396, w R 2=0.1091$
$R 1=0.0558, w R 2=0.1204$
0.628 and -0.296 e $\cdot \AA^{-3}$

Figure S3. Molecular structure of compound 3 j in the crystal (ORTEP plot: displacement thermal ellipsoids are drawn at $\mathbf{5 0 \%}$ probability level)
The bond lengths and bond angles in both phenyl rings $[d=1.384-1.403 \AA, \theta=119.04$ 121.30°], in the five-membered ring of the indole [$d=1.371-1.444 \AA, \theta=106.61-109.76^{\circ}$], in the six-membered ring of the indole $\left[\mathrm{d}=1.385-1.413 \AA, \theta=117.32-121.64^{\circ}\right]$ as well as the bond lengths of the C-C single bonds $(d(C 7-C 16)=1.4635(9) \AA, d(C 8-C 9)=1.470(1) \AA)$ are in the expected range. They are furthermore comparable to those observed for 2,3-diphenyl$1 H$-indole as presented by Schmelter et al. ${ }^{4}$. Also, the geometry of the methoxy group $\left(\mathrm{d}(\mathrm{C} 12-\mathrm{O} 1)=1.3641(9) \AA, \quad \mathrm{d}(\mathrm{C} 15-\mathrm{O} 1)=1.423(1) \AA, \quad \theta(\mathrm{C}-\mathrm{O}-\mathrm{C})=117.81(8)^{\circ}\right) \quad$ and the methylsulfonyl group [$d=1,438-1,759 \AA$] is as expected. Interestingly, the molecular geometry of $\mathbf{7 b}$ significantly differs in comparison to its unsubstituted chemical lead 2,3-diphenyl-1H-indole. The plane of the methoxy-substituted phenyl ring is twisted with a dihedral angle of 52.89° in relative to the plane of the indole core. The methylsulfonyl substituted phenyl ring is less twisted. The dihedral angle between the two planes is 39.62°. In 2,3-diphenyl-1H-indole the orientation of the phenyl rings is opposite. The phenyl ring in 2position is less twisted than its neighboring phenyl ring in 3-position. The dihedral angles are 44.0° and 54.2°, respectively. ${ }^{4}$ This indicates a preferred interaction of the electron-deficient methylsulfonyl substituted phenyl ring with the electron-rich indole system.
a)

b)

Figure S4. a) intermolecular interactions in the unit cell of the crystal of 3 j (distances given in \AA), b) packing in the crystal of 3 j with selected intermolecular interactions. The intermolecular distances given in a) and b) are given in Å.

Within one unit cell, two molecules in each case are positioned by $\pi \cdots \pi$-interactions along the crystallographic c-axis. So, each methoxy substituted phenyl-ring is positioned edge-toface to the neighboring phenyl ring $\left(\mathrm{d}\left(\mathrm{Z}_{\text {MeO-Pheny }} \cdots \mathrm{Z}_{\mathrm{N} 1-\mathrm{C} 8}\right)=4.855 \AA\right.$ and $\mathrm{d}\left(\mathrm{Z}_{\text {MeO-Pheny }} \cdots \mathrm{Z}_{\mathrm{N} 1-}\right.$ c8) $=4.792 \AA$, respectively; dihedral angle is in both cases 51.66°) (table S4). C-H $\cdots \pi-$ contacts between the methoxy group of one molecule with the methylsulfonyl substituted phenyl ring of the neighboring molecule $\left(\mathrm{d}\left(\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{Z}_{\text {SO }_{2}-\text { Pheny }}\right)=2.75 \AA\right.$) cause the
binding of the molecules within the unit cell (figure S4a). These interactions continue with molecules of neighboring unit cells and lead to the orientation of the molecules in the plane $(0,0,1)$ (figure S 4 b). The packing along the crystallographic a-axis is finally caused by moderate hydrogen bonds between the methylsulfonyl moiety and NH-groups of the indole moieties sticking out of these planes $(\mathrm{d}(\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3)=2.085 \AA)$ as well as $\mathrm{C}-\mathrm{H} \cdots \pi$-contacts $\left(\mathrm{d}\left(\mathrm{C} 22-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{Z}_{\text {Meo-Pheny }}\right)=2,08 \AA\right)$.

Table S4. Interatomic distances and geometries for intermolecular contacts of compound $3 \mathbf{j}$ in the crystal

Atoms	r/A	d/A	D / A	Dihedral angle $/{ }^{\circ}$	$\theta /{ }^{\circ}$	Symmetry operation
C15-H15A \cdots - $\mathrm{Z}_{\text {SO2-Phenyl }}$	-	2.75	3.420(1)	-	126	$1-X,-1 / 2+Y, 3 / 2-Z$
C22-H22C \cdots - Meo-Phenyl $^{\text {a }}$	-	2.68	3.485(1)	-	140	$1+X, 1 / 2-Y, 1 / 2+Z$
N1-H1-.O3,	0.88	2.08	2.9102(9)	-	156	$-1+x, y, z$
$\mathrm{Z}_{\text {MeO-Phenyl }} \cdots{ }^{\text {- }} \mathrm{Z}_{\text {N1-C8 }}$	-	4.8550(5)	-	51.66(4)	-	X, 1/2-Y,-1/2+Z
$\mathbf{Z}_{\text {Meo-Pheny }}{ }^{\cdots} \mathbf{Z}_{\text {N1-C8 }}$	-	4.7924(5)	-	51.66(4)	-	$X, 1 / 2-Y, 1 / 2+Z$
	$\mathbf{Z}_{\mathrm{N} 1-\mathrm{C} \% \ldots}$ Centroid of N1-C1-C6-C7-C8; $\mathbf{Z}_{\text {Meo-Pheny1... }}$ Centroid of C9-C10-C11-C12-C13-C14; $\mathbf{Z}_{\text {SO }_{2}-\text { Phenyl }}$... Centroid of C16-C17-C18-C19-C20-C21					

Crystal structure of compound 2c

Compound 2c crystallized in the monoclinic space group $P 2_{1} / \mathrm{c}$ with one molecule in the asymmetric unit and four molecules in the unit cell (table S5). The crystal structure of $\mathbf{2 c}$ is in accordance with the spectroscopic data (figure S5).

Table S5. Crystal data and parameters for structure refinement of 2c.

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~F} \mathrm{~N} \mathrm{O}_{4} \mathrm{~S}$	
Formula weight	411.43	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	$\alpha=90^{\circ}$
Space group	$P 2_{1} / \mathrm{c}$	$\beta=94.875(3)^{\circ}$
Unit cell dimensions	$\mathrm{a}=13.4778(7) \AA$	$\gamma=90^{\circ}$
	$\mathrm{b}=5.3885(3) \AA$	
Volume	$\mathrm{c}=26.674(1) \AA$	
Z	$1930.2(2) \AA^{3}$	
Density (calculated)	4	
Absorption coefficient	$1.416 \mathrm{~g} / \mathrm{cm}^{3}$	
F(000)	$0.207 \mathrm{~mm}^{-1}$	
Crystal size	856	

Table S5 continued. Crystal data and parameters for structure refinement of 2c.

Theta range for data collection	2.25 to 32.64°
Index ranges	$-20 \leq \mathrm{h} \leq 20,-8 \leq \mathrm{k} \leq 7,-40 \leq \mathrm{I} \leq 37$
Reflections collected	25185
Independent reflections	$6986, \mathrm{R}_{\text {int }}=0.0349$
Absorption correction	multi-scan (SADABS)
Max. and min. transmission	0.9618 and 0.9127
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$6986 / 0 / 262$
Goodness-of-fit on F^{2}	1.067
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0437$, wR2 $=0.1173$
R indices (all data)	$\mathrm{R} 1=0.0704, \mathrm{wR2}=0.1324$
Largest diff. peak and hole	0.301 and $-0.467 \mathrm{e} \cdot \AA^{-3}$

Figure S5. Molecular structure of compound 2 c in the crystal (ORTEP plot: displacement thermal ellipsoids are drawn at 50% probability level)

The bond lengths and bond angles in both phenyl rings $[\mathrm{d}=1.373-1.415 \AA, \theta=117.55-$ 123.31°] as well as the bond lengths of the C-C single bonds $(\mathrm{d}(\mathrm{C} 10-\mathrm{C} 16)=1.481(2) \AA$, $d(C 16-C 17)=1.496(2) \AA, \quad d(C 5-C 8)=1.503(2) \AA$) and of the $C-N$-single bonds ($d(C 8-$ $\mathrm{N} 1)=1.362(2) \AA, \mathrm{d}(\mathrm{C} 9-\mathrm{N} 1)=1.401(2))$ are in the expected range and comparable to those of N-(2-benzoylphenyl)benzamide described by Alberti et al. ${ }^{5}$. Also, the bond lengths of the C-F bond $(\mathrm{d}(\mathrm{C} 20-\mathrm{F} 1)=1.352(2) \AA$), of the $\mathrm{C}-\mathrm{C}$ single bond between methyl group and pheny ring $(d(C 12-C 15)=1.504(2) \AA)$ and bonds within the methylsulfonyl group $[d=1.436-$ $1.765 \AA$] are as expected. The molecular geometry of $\mathbf{2 c}$ is similar to that of its unsubstituted chemical lead. So, also in compound 2c an intramolecular moderate hydrogen bond (d(N1$\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 4)=1.899 \AA$) causes the orientation of the $\mathrm{C} 16-\mathrm{O} 4$ double bond in one plane with the methyl substituted phenyl ring. The planes formed by C59-N1-C8-C5 and by C17-C16-O4-C10 are twisted by a dihedral angle of 7.11° and 18.79° in relative to the central phenyl ring what is a little more than found for N-(2-Benzoylphenyl)benzamid $\left(4.60^{\circ} \text { and } 10.55^{\circ}\right)^{5}$. Interestingly, this in turn causes a smaller dihedral angle between central phenyl ring and the planes of the fluoro as well as methylsulfonyl substituted phenyl ring, namely, 46.43° and 9.11°, compared to that in N-(2-Benzoylphenyl)benzamid $\left(64.63^{\circ} \text { and } 15.31^{\circ}\right)^{5}$.
a)

b)

Figure S6. a) packing of 2 c in layers along $(0,0,1)$ in the crystal, b) sawtooth-shaped orientation of 2 c in the crystal (left) and selected intermolecular interaction between the layers. The intermolecular distances given in a) and b) are given in A.

The molecules in the unit cell do not interact with each other. In the crystal, weak hydrogen bonds

$$
(\mathrm{d}(\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{~F} 1)=2.489 \AA
$$

$$
\mathrm{d}(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1)=2.271 \AA
$$

and
$d(C 13-H 13 A \cdots O 2)=2.391 \AA$) cause the binding within layers in the plane $(0,0,1)$ (figure S6a). With view along the crystallographic a-axis, a sawtooth-shaped orientation of the molecules is present (figure S 6 b left). This orientation is determined by weak hydrogen bonds $(\mathrm{d}(\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A} \cdots \mathrm{O} 2)=2.53 \AA$ and $\mathrm{d}(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1)=2.57 \AA)$ as well as $\mathrm{C}-\mathrm{H} \cdots \pi$-interactions $\quad\left(\mathrm{d}\left(\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{Z}_{\text {Me-Phenyl }}\right)=2.78 \AA\right)$. (table S 6 , figure S 6 b right). Interestingly, in the direction $[0,1,0]$ the molecules are stacked with a constant distance of $d=5.389 \AA$ in the whole crystal.

Table S6. Interatomic distances and geometries for intermolecular contacts of compound $2 \mathbf{c}$ in the crystal

Atoms	r/A	d/A	D / A	Dihedral angle $/^{\circ}$	$\theta /{ }^{\circ}$	Symmetry operation
C1-H1A \cdots O1	0.98	2.57	3.493(2)	-	157	1-x,-1/2+y,1/2-z
C1-H1B \cdots O1	0.98	2.27	3.205(2)	-	159	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
C7-H7A‥F1	0.95	2.49	3.217(2)	-	133	-x,-2-y,-z
C13-H13A \cdots O2	0.95	2.39	$3.306(2)$	-	162	$-1+x, y, z$
C21-H21A \cdots O2	0.95	2.53	3.448(2)	-	162	-x,-1-y,-z
C1-H1C $\cdots \mathrm{Z}_{\text {Me-Phenyl }}$	-	2.78	3.681(2)	154	-	-X, 1/2+Y, 1/2-Z
	$\mathbf{Z}_{\text {Me-Phenyl... }}$ Centroid of C9-C14; $\mathbf{Z}_{\mathrm{F}-\text { Phenyl }} \ldots$ Centroid of C17-C22; $\mathbf{Z}_{\mathrm{SO}_{2}-\text { Phenyl... }}$ Centroid of C2-C7					

Crystal structure of compound 3a

Compound 3 a crystallized in the monoclinic space group $P 2_{1} / \mathrm{c}$ with one molecule in the asymmetric unit and four molecules in the unit cell (table S7). The crystal structure of 3a is in accordance with the spectroscopic data (figure S7).

Table S7. Crystal data and parameters for structure refinement of 3a.

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F} \mathrm{~N} \mathrm{O}_{2} \mathrm{~S}$	
Formula weight	365.41	
Temperature	173(2) K	
Wavelength	0.71073 A	
Crystal system	Monoclinic	
Space group	$P 2{ }_{1} / \mathrm{C}$	
Unit cell dimensions	$\mathrm{a}=17.9195(8) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=5.9807(3) \AA$	$\beta=99.089(2)^{\circ}$
	$\mathrm{c}=16.6142(8) \AA$	$\gamma=90^{\circ}$
Volume	1758.2(2) \AA^{3}	
Z	4	
Density (calculated)	$1.380 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.209 \mathrm{~mm}^{-1}$	
F(000)	760	
Crystal size	$0.57 \times 0.14 \times 0.11 \mathrm{~mm}^{3}$	
Theta range for data collection	3.92 to 28.34°	
Index ranges	$-23 \leq h \leq 23,-7 \leq k \leq 7,-21 \leq 1 \leq 22$	
Reflections collected	26355	
Independent reflections	4340, $\mathrm{R}_{\text {int }}=0.0321$	
Absorption correction	multi-scan (SADABS)	
Max. and min. transmission	0.9774 and 0.8389	
Refinement method	Full-matrix least-squares on F^{2}	

Table S7 continued. Crystal data and parameters for structure refinement of 3a.

Data / restraints / parameters	$4340 / 0 / 236$
Goodness-of-fit on F^{2}	1.051
Final R indices [l>2sigma(I)]	$\mathrm{R} 1=0.0397, \mathrm{wR2}=0.1007$
R indices (all data)	$\mathrm{R} 1=0.0489, \mathrm{wR2}=0.1075$
Largest diff. peak and hole	0.356 and $-0.429 \mathrm{e} \cdot \AA^{-3}$

Figure S7. Molecular structure of compound 3 a in the crystal (ORTEP plot: displacement thermal ellipsoids are drawn at $\mathbf{5 0 \%}$ probability level)
The bond lengths and bond angles in both phenyl rings [d $=1,375-1,411 \AA, \theta=117,62-$ $121,66^{\circ}$], in the five-membered ring of the indole [$d=1,374-1,443 \AA, \theta=106,81-109,19^{\circ}$], in the six-membered ring of the indole $\left[d=1,370-1,388 \AA, \theta=118,06-123,31^{\circ}\right.$] as well as the bond lengths of the C-C single bonds $(d(C 5-C 8)=1,464(2) \AA, d(C 15-C 16)=1,477(2) \AA$), of the C-F single bond (d(C19-F1) = 1,364(2) \AA) and of the methylsulfonyl group [$\mathrm{d}=1,439$ $1,756 \AA$] are in the expected range. The intramolecular atomic distances are comparable to those in 2,3-diphenyl-1H-indole considering the deviations caused by the fluoro substitution onto the geometry of the phenyl ring as seen e.g. for the phenyl ring in 5 c or 4 fluoroacetophenone ${ }^{2,4}$. In comparison to its unsubstituted chemical lead, the molecular geometry is similar with respect to the general orientation of the phenyl rings in the molecule. The phenyl ring in 2-position of the indole is less twisted than the neighboring phenyl ring in 3 -position. However, in compound 3a the dihedral angle between planes of the methyl sulfonyl substituted phenyl ring and the indole core is 26.74° and thus significantly less twisted than in 2,3 -diphenyl- 1 H -indole where this angle is 44.0°. In turn, the fluoro substituted phenyl ring is more twisted. The dihedral angles are $66,36^{\circ}$ in 3 a and 54.2° in its unsubstituted counterpart ${ }^{4}$. This indicates the favored interaction of the electron-deficient methylsulfonyl substituted phenyl ring with the electron-rich indole system.
a)

b)

Figure S8. a) Orientation of 3 a in layers along $(1,0,0)$ in the crystal (view along the crystallographic \mathbf{b}-axis, molecules of the unit cell are shown as capped sticks), b) schematic presentation of the crystal packing of 3a (left) and intermolecular interactions leading to binding between the layers. The intermolecular distances given in a) and b) are given in A.
In the unit cell, weak hydrogen bonds $(\mathrm{d}(\mathrm{C} 18-\mathrm{H} 18 \mathrm{~A} \cdots \mathrm{~F})=2.547 \AA$) as well as $C-H \cdots \pi$-interactions $\left(D\left(C 1 \cdots Z_{N 1-c 9}\right)=3.606(2) \AA\right.$) cause binding of the molecules (table S8). The continuation of these interactions in the crystal causes the orientation of the molecules in layers in the plane $(1,0,0)$ wherein the fluoro substituents are facing to each other (figure S8a). In the direction [1,0,0], these layers are connected at the boundary area of the unit cells with neighboring molecules by moderate ($\mathrm{d}(\mathrm{N} 1-\mathrm{H} 1 \mathrm{D} \cdots \mathrm{O} 1)=2.145 \AA$) as well as weak $(\mathrm{d}(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2)=2.440 \AA, \quad \mathrm{~d}(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1)=2.574 \AA)$ hydrogen bonds. Thereby, the molecules are orientated in planes $(0,0,1)$ that are sawtooth-shaped in the direction of the crystallographic a-axis (figure S8b).

Table S8. Interatomic distances and geometries for intermolecular contacts of compound 3a in the crystal

Atoms	r/A	d/A	D / A	$\theta /^{\circ}$	Symmetry operation
C18-H18A \cdots F1	0.95	2.55	3.490(2)	172	$x,-1+y, z$
C13-H13A \cdots F1	0.95	2.60	3.468(2)	152	1-x,2-y,1-z
N1-H1D - 01	0.88	2.15	3.005(1)	165	-x,1/2+y,1/2-z
C1-H1B \cdots O1	0.98	2.57	$3.237(2)$	125	-x, 1-y,-z
C1-H1A \cdots O2	0.98	2.44	3.253(2)	140	-x,2-y,-z
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{Z}_{\mathrm{N} 1-\mathrm{C9}}$	-	2.73	3.6057(18)	149	$X, 3 / 2-Y,-1 / 2+Z$
$\mathbf{Z}_{\text {pyrrol }}$... Centroid of N1-C8-C15-C14-C9					

NMR spectra of new compounds

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 1 c in DMSO- d_{6}.

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{2 c}$ in acetone- d_{6}.

Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 2 d in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure $\mathbf{S 1 2 .}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 2 e in acetone- d_{6}.

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 c in acetone- d_{6}.

Figure S14. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 d in acetone- d_{6}.

Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 e in acetone- d_{6}.

Figure S16. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 h in DMSO- d_{6}.

Figure S17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 in acetone- d_{6}.

Figure $\mathrm{S} 18 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 j in acetone- d_{6}.

Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 31 in acetone- d_{6}.

Figure S20. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 5 b in CDCl_{3}.

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 3 m in DMSO- d_{6}.

Figure S22. NOESY spectrum of compound 3 m in DMSO-d ${ }_{6}$.

Figure S23. NOESY spectrum of compound 3 m in DMSO- d_{6} within in the range of $6.5-12 \mathrm{ppm}$.
The two expansions in the range of $\{\mathrm{f} 1=7.25-8.0, \mathrm{f} 2=11.0-11.75\}$ (left) and $\{\mathrm{f} 1=11.3-11.8, \mathrm{f} 2=6.9-7.9\}$ (right) show the cross peaks that assure the structural assignment of 3 m . A strong cross peak $\{7.63$, $11.65\}$ is present for the interaction of the indole-NH at 11.65 ppm with the dublett at 7.63 ppm which can be assigned by ${ }^{1} \mathrm{H}-$ NMR to two protons of the methylsulfonyl-substituted phenyl ring and with NOESY to the protons at position 2 and 6 of the phenyl ring. This interaction can only be found for 3 m and not its regioisomer 2-(4-fluorophenyl)-5-methoxy-3-[4-(methylsulfonyl)phenyl]-1H-indole thus assuring the structural assignment of 3 m . A second strong cross peak $\{7.39,11.65\}$ between the singulett at 11.65 ppm and the multiplett at $7.33-7.44 \mathrm{ppm}\left(2 \mathrm{H}_{\mathrm{F} \text {-phenyl } 2 / 6} / \mathrm{H}_{\text {indole }}\right)$ can be assigned to the interactions of the indoleNH with one proton of the indole moiety (C7-H). A third weak cross peak $\{7.88,11.65\}$ better visible at increased intensity indicates a further weak interaction of the indole-NH with the dublett at 7.88 ppm , which can in turn be assigned to the protons in position 3 and 5 of the methylsulfonyl-substituted phenyl ring.

References

1 T. P. Rieker, C. Haltiwanger, K. Eidman, D. W. Walba, N. A. Clark and A. C. Larson, Acta Crystallogr C, 1993, 49, 406-408.

2 M. Shibakami, M. Tamura and A. Sekiya, J Incl Phenom Macrocycl Chem, 1995, 22, 155-168.

3 Y. Ye, Acta Cryst. E, 2007, 63, o2652-o2652.
4 B. Schmelter, H. Bradaczek and P. Luger, Acta Crystallogr B, 1973, 29, 971-976.
5 A. Alberti, P. Astolfi, P. Carloni, D. Döpp, L. Greci, C. Rizzoli and P. Stipa, Tetrahedron, 2011, 67, 6889-6894.

