Electronic Supplementary Information (ESI):

Facile synthesis of single-crystalline hollow α -Fe₂O₃ nanospheres with gas sensing properties

Pei-Pei Wang,^a Xiao-Xin Zou,^a Liang-Liang Feng,^a Jun Zhao,^a Pan-Pan Jin,^a Rui-Fei Xuan,^b Ye Tian,^c Guo-Dong Li^a and Yong-Cun Zou*^a

 ^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China;
^bCollege of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116, P. R. China;
^cTianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.

*Corresponding author. Yong-Cun Zou

E-mail address: zouyc@jlu.edu.cn

1. Experimental

1.1 Materials

Zinc acetate dihydrate, thiourea, cyclohexylamine (CHA), ethanol and the reference gas sensing reagents were purchased from Beijing Chemical Factory. FeCl₃·6H₂O was purchased from Tianjin Huadong Chemical Industry. All of the reagents were of analytic grade and used as received without further purification. Deionized water was used throughout.

1.2 General characterization

X-ray diffractometer (XRD) with Cu K α radiation ($\lambda = 1.5418$ Å) was assessed to determine crystalline structure of the samples Rigaku D/Max 2550. The morphology of the samples is obtained by scanning electron microscope (SEM) of JEOL JSM 6700F. Transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) were determined by FEI Tecnai G2S-Twin. XPS spectra were recorded on an ESCALAB 250 X-ray photoelectron spectrometer, using a monochromated X-ray source (Al K α h = 1486.6 eV). Raman spectra were charaterized with Horiba Jobin Yvon LabRAM ARAMIS with 633 nm He-Ne laser excitation. Nitrogen absorption and desorption isotherms was performed on Micromeritics ASAP 2020M system.

1.3 Preparation of ZnS-CHA Nanohybrid

The ZnS-CHA nanohybrid material was prepared by following the previously-reported solvothermal procedures with slight variations.¹ Zinc acetate dihydrate (0.32 g, 1.5 mmol) as the zinc source and thiourea (0.255 g, 3 mmol) as the sulfur source were added to CHA (40 mL) and stirred vigorously. The mixture was sealed and heated at 120 °C for 20 h in a 50 mL PTFE-lined stainless steel autoclave. The white ZnS-CHA precipitate was obtained after cooling down to room temperature, which was washed several times with ethanol and dried at 60 °C for 6 h.

1.4 Synthesis of single-crystalline hollow α-Fe₂O₃ nanospheres

FeCl₃·6H₂O (0.16 g) with the as prepared ZnS-CHA nanocomposite (0.03 g) were stirred in 20 mL deionized water for 20 min, and then the mixture was sealed in a 30 mL PTFElined stainless steel autoclave and heated at 160 °C for 24 h. After cooling down to room temperature, the red α -Fe₂O₃ precipitate was harvest and washed several times with ethanol and dried at 60 °C 6 h for further use.

Fig. S1 (A) XRD pattern; (B) IR sepectrum; (C) TG analysis; high resolution XPS spectra of (D) Zn 2p, (E) S 2p and (F) N 1s for the ZnS-CHA nanocomposite.

Fig. S2 SEM image of the ZnS-CHA nanohybrid.

Fig. S3 SEM images of the of the products obtained at (A) 30 min, (B) 1 h, (C) 6 h, (D) 8 h (E) 24 h, and (F) low magnification TEM for 24 h.

Scheme S1. Scheme for synthesis of the hollow single-crystalline α -Fe₂O₃ nanospheres.

Fig. S4 High resolution XPS spectra (A) Fe 2p and (B) O 1s of the single-crystalline hollow Fe_2O_3 .

Fig. S5 Contrast SEM images of the obtained Fe₂O₃ with different reaction conditions named (A) Fe₂O₃-1; (B) Fe₂O₃-2; (C) Fe₂O₃-3; (D) Fe₂O₃-4, respectively.

Fig. S6 SEM images of the different size Fe_2O_3 nanospheres with multiplied Fe^{3+} source (A) 0.16 g; (B) 0.32 g; (C) 0.48 g and (D) 0.64 g FeCl₃·6H₂O.

Fig. S7 (A) TEM and (B) HRTEM images of the Fe_2O_3 obtained at 6 h; (C) TEM and (D) HRTEM images of the Fe_2O_3 -1 (In control experiment section (1)).

Fig. S8 Nitrogen adsorption-desorption isotherm of (A) the single-crystalline hollow Fe_2O_3 nanospheres and (B) Fe_2O_3 -1.

Fig. S9 Magnification curve of the single-crystalline hollow Fe₂O₃ nanospheres towards 500 ppm ethanol.

Fig. S10 Stability sensing measurement to ethanol of the single-crystalline hollow Fe_2O_3 nanospheres.

Reference

 X. X. Zou, G. D. Li, J. Zhao, P. P. Wang, Y. N. Wang, L. J. Zhou, J. Su, L. Li and J. S. Chen, *Inorg. chem.* 2011, **50**, 9106-9113.