Supporting Information

Amplification of Fluorescent DNA through Enzymatic Incorporation of a Highly Emissive Deoxyguanosine Analogue

Haruka Otomo,[†] Soyoung Park, *[†] Seigi Yamamoto,[†] and Hiroshi

Sugiyama*,†,‡,§

[†]Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

[‡]Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshidaushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan

SCREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

*Corresponding author: Dr. Soyoung Park, Prof. Dr. Hiroshi Sugiyama

Tel.: (+)81-75-753-4002; Fax: (+)81-75-753-3670

E-mail: oleesy@kuchem.kyoto-u.ac.jp, hs@kuchem.kyoto-u.ac.jp (H.S.)

Materials

Dichloroacetic acid and tri-*n*-butylamine were received from Wako Chemicals and used without further purification. bis(tributylammonium)pyrophosphate was purchased from Sigma-Aldrich Chemicals Co. (Milwaukee, WI). 2-chloro-1,3,2-benzodioxaphosphorin-4-one and iodine were received from TCI. Acetic anhydride was purchased from Nacalai Tesque . All other chemicals and solvents were purchased from Sigma-Aldrich Chemicals Co., Wako Pure Chemical Ind. Ltd., TCI, Nacalai Tesque, or Kanto Chemical Co. Inc. O^5 '-Dimethoxytrityl- N^2 -DMF-2-aminothieno[3,4-*d*]pyrimidine G mimic deoxynucleoside was prepared by following the literature procedures ¹. Water was deionized (specific resistance of \geq 18.0 M Ω cm at 25 °C) by a Milli-Q system (Millipore Corp.).

Methods

NMR spectra were obtained on a JEOL JNM ECA-600 spectrometer operating at 600 MHz for ¹H NMR and in CDCl₃ unless otherwise noted. Flash column chromatography was performed employing Silica Gel 60 (70–230 mesh, Merck Chemicals). Silica-gel preparative thin-layer chromatography (PTLC) was performed using plates from Silica gel 70 PF_{254} (Wako Pure Chemical Ind. Ltd.).

Synthesis of thdGTP

Reagents and conditions: (a) (i) acetic anhydride, pyridine; (ii) dichloro acetic acid, DCM, 0 °C, 51%; (b) 2-chloro 4H-1,3,2-benzodioxaphosphorin 4-one, dioxane, pyridine, tri-*n*-butylamine, bis(tri-*n*-butylammonium)pyrophosphate, DMF, then I_2 /pyridine/H₂O, 39%

O³'-acetyl-N²-DMF-2-aminothieno[3,4-d]pyrimidine G mimic deoxynucleoside (2)

O⁵'-Dimethoxytrityl-N²-DMF-2-aminothieno[3,4-d]pyrimidine G mimic deoxynucleoside (192 mg, 0.3 mmol) was coevaporated to dryness with pyridine three times. To the residue in pyridine (3.0 mL), acetic anhydride (113 µL, 1.2 mmol) was added. The reaction mixture was stirred at room temperature for 12 h and was separated by ethyl acetate and 5% aqueous NaHCO3. The organic layer was washed with saturated NaCl, dried with Na₂SO₄, and evaporated in vacuo. The residue in CH₂Cl₂ (30 mL) was added dichloroacetic acid (300 µL) at 0 °C. The reaction mixture was stirred at 0 °C for 15 min. To the reaction mixture was added 5% aqueous NaHCO₃, and the organic layer was washed with 5% NaHCO₃ and saturated NaCl. After drying over NaSO₄, the solvent was concentrated. The residue was loaded on preparative TLC. $CH_2Cl_2/MeOH = 10/1$ was used to PTLC and eluted with EtOAc and MeOH, to afford O^3 '-acetyl- N^2 -DMF-2-aminothieno[3,4-d]pyrimidine 56.4 mg of G mimic deoxynucleoside (2) in 51% yield. ¹H NMR (600 MHz, CDCl₃): δ 8.50 (s, 1H), 8.30 (br, 1H), 8.06 (s, 1H), 5.45 (d, J = 5.46 Hz, 1H), 5.41 (dd, J = 11.55, 5.43 Hz, 1H), 5.02 (br, 1H), 4.17 (s, 1H), 3.86 (d, J = 2.67 Hz, 1H), 3.82 (m, 1H), 3.17 (s, 3H), 3.06 (s, 3H), 2.95 (ddd, J = 15.47, 9.53, 6.12 Hz, 1H), 2.28 (dd, J = 13.60, 5.41 Hz, 1H), 2.12 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 170.75, 159.01, 158.15, 154.71, 146.34, 126.48, 126.13, 124.44, 86.15, 78.30, 76.13, 63.45, 41.10, 39.76, 34.88, 21.18; ESI-HRMS calculated for C₁₆H₁₉N₄O₅S [M-H]⁻ 379.1082, found 379.1098.

O⁵'-triphosphate -2-aminothieno[3,4-d]pyrimidine G mimic deoxynucleoside (3)

 O^3 '-acetyl- N^2 -DMF-2-aminothieno[3,4-*d*]pyrimidine G mimic deoxynucleoside (2) (30) mg, 82 µmol) was coevaporated with pyridine to dryness. The residue was dissolved in pyridine (80 µL) and dioxane (160 µL). 2-chloro-1,3,2-benzodioxaphosphorin-4-one (18.3 mg, 90 µmol) was added. After 10 min, tri-n-butylamine (82 µL) and 0.5 M bis(tributylammonium)pyrophosphate in DMF (246 µL, 123 µmol) were added to the reaction mixture, which was stirred at room temperature for 10 min. A solution of 1% iodine in pyridine/water (98/2, v/v, 1.64 mL) was added. After 15 min, 5% aqueous solution of NaHSO₃ (123 µL), followed by water (6 mL), was added to the reaction mixture, which was stirred at room temperature for 30 min, and then 28% NH₄OH (16 mL) was added. Ammonolysis was performed at room temperature for 4 h. After the reaction mixture was concentrated in vacuo, the product was dissolved in small amount of water and purified by C18-HPLC (eluted by a gradient of 0% to 50% CH₃CN in 50 mM TEAA) to give O^5 '-triphosphate -2-aminothieno[3,4-d]pyrimidine G mimic deoxynucleoside (3) (16.7 mg, 39%). ¹H NMR (600 MHz, D₂O): δ 8.19 (s, 1H), 5.59 (dd, J = 10.16, 6.12 Hz, 1H), 4.68 (m, 1H), 4.23 (m, 2H), 4.19 (m, 1H), 2.38-2.33 (m, 2H))2H); ³¹P NMR (240 MHz, D₂O): δ -22.50 (t, J = 19.75 Hz, 1P), -10.57 (d, J = 19.75 Hz, 1P), 9.80 (d, J = 19.75 Hz, 1P); ESI-HRMS calculated for $C_{11}H_{15}N_3O_{13}P_3S^{-1}[M-H]^{-1}$ 521.9544, found 521.9994.

Photophysical data for thdGTP monomer

Figure S1. JASCO V-650 UV/VIS spectrophotometer was used to record absorption spectra with a 0.5 nm resolution. The cuvette temperature was kept at 25 °C by JASCO PAC-743R. Sample was prepared with 10 μ M in H₂O.

Figure S2. Fluorescence measurements were conducted using a JASCO FP-6300 spectrofluorometer. The sample temperature was controlled with a JASCO EHC-573 at 20 °C. Measurements were performed using fluorescence cells with a 0.5-cm path length. Sample was prepared with 10 μ M in H₂O. Excitation wavelength was 325 nm.

Primer extension

The FAM-labeled primer (10-mer) was annealed with the 17-mer templates in 2x Klenow Fragment Buffer (20 mM Tris-HCl (pH 8.0), 10 mM MgCl₂), by heating at 95 °C and slow cooling to rt. The duplex solution (10 μ M, 5 μ l) was mixed with 2 μ l of three dNTPs solution (200 μ M dCTP, dTTP, and dATP) and 2 μ l of dGTP or thdGTP solution (200 μ M), and the reaction was started by adding 1 μ l of a solution containing the exonuclease-proficient Klenow fragment (2 U, Wako). The reaction mixture was incubated at 37°C for 30 min and was terminated by adding 10 μ l of a dye solution (0.05% BPB in formamide) and heating at 75 °C for 3 min. The products were fractionated on a 15% (v/v) polyacrylamide gel containing 7 M urea (100 V, 10 mA, 60 min), and were analyzed with a bio-imaging analyzer (FLA-3000, Fujifilm). Similar experiments using 10-mer primer without FAM-label was also conducted. After the fractionation by polyacrylamide gel electrophoresis, the photo was taken under UV irradiation, followed by CYBR Gold dyeing.

Figure S3. (a) Primer extension experiments with 17-mer templates 1–3, in the presence of either natural dGTP or thdGTP and three dNTPs (dATP, dTTP, and dCTP).
(b) Analyses by denaturing gel electrophoresis of primer-extended products with each

template after 30 min incubation at 37 °C. Lane 'control' corresponds to incubation with a mixture of primer, and dNTPs without the Klenow fragment.

PCR amplification

DNA PCR amplification (50 of the 56-mer fragments (5'μl) TGGAGAGTATAGTGAGTGGTATTATGTACGTATTTCACACACCAAACACCTA TCAT-3') was performed by using 1 µM each reverse primer (24-mer; 5'-ATGATAGGTGTTTGGTGTGTGTGAAA-3') and forward primer (26-mer; 5'-TGGAGAGTATAGTGAGTGGTATTATG-3') and each DNA pol at the following concentration (KOD -Plus-, 1.0 U; One Taq, 5.0 U; Deep Vent (exo-), 2.0 U; Deep Vent, 2.0 U), in the 1x reaction buffer accompanying each DNA pol, supplemented with 5 µl of 2 mM dNTPs (dCTP, dTTP, dATP, and thdGTP). PCR conditions were 2 m at 98 °C, 15 s at 95 °C, 30 s at 53 °C, and 10 s at 68 °C for 40 cycles. The PCR products were fractionated by native 15% (v/v) PAGE (200 V, 20 mA, 60 min).

PCR amplification with the mixture of thdGTP and dGTP

PCR amplification (50 µl) of 338-mer templates with the mixture of thdGTP and dGTP contained 1 µM of the primer set, 90 ng of pET28a plasmid and 1.0 U of KOD -Pluspolymerase, in the 1x reaction buffer accompanying each DNA pol, supplemented with 5 µl of 2 mM three dNTPs (dCTP, dTTP, and dATP) and total 2 mM of dGTP and thdGTP mixture (1:0, 1:1, 1:3, ..., 1:9, 0:1). PCR conditions were 2 m at 98 °C, 15 s at 95 °C, 30 s at 53 °C, and 30 s or 1 m at 68 °C for 40 cycles. After an aliquot (3 µl) of PCR products were fractionated by 2% agarose gel electrophoresis, the residue was purified with GenElute PCR Clean-Up Kit (Sigma-Aldrich) to remove dNTPs. A portion of each purified DNA solution was diluted to 1.3 µM (100 µl), and fluorescent measurement was conducted. The residual solution was incubated at 70 °C for 2 h with nuclease P1 (Wako) and at 37 °C for 2.5 h with Antarctic Phosphatase (New England Biolabs). All of the reaction mixture was used for HPLC analysis.PCR amplification (50 µl) of 298, 480, and 761-mer templates with the mixture of dNTPs and 5 equiv of thdGTP contained 1 µM of the primer set, 90 ng of pUC18 or 150 ng of pGEM plasmids and 1.0 U of KOD –Plus- polymerase, supplemented with 5 µl of 2 mM dNTPs mixed solution (dCTP, dTTP, dATP, and dGTP) and 25 µl of 2 mM thdGTP. PCR conditions were 2 m at 98 °C, 15 s at 95 °C, 30 s at 53 °C, and 30 s or 1 m at 68 °C for 40 cycles. After an aliquot (5 µl) of PCR products were fractionated by 2% agarose gel electrophoresis, the residue was purified with GenElute PCR Clean-Up Kit (Sigma-Aldrich) to remove dNTPs. A portion of each purified DNA solution was diluted to 1.3 μ M (100 μ l), and fluorescent measurement was conducted. The residual solution was incubated at 70 °C for 1 h with nuclease P1 (Wako) and at 37 °C for 1 h with Antarctic Phosphatase (New England Biolabs). All of the reaction mixture was used for HPLC analysis.

template	primers	
cDNA of Ζα domain from ADAR	Forward primer	5'-TTAATGAATTCCTGAGTATCTACCAAGATCAGGAACAAAG-3'
(338-mer) ^a	Reverse primer	5'-CCGCTGAGCAATAACTAGCAT-3'
pUC18 F413-	Forward primer	5'-GCAGGTCGACTCTAGAGGAT-3'
(298-mer)	Reverse primer	5'-GAGTCAGTGAGCGAGGAAG-3'
nCEM E601		
	Forward primer	5'-ATCGACGCTCAAGTCAGAGG-3'
1080	Reverse primer	51 - CTTTTCCCCCATCAACACCTACC-31
(480-mer)	Reverse priner	J GITIGEEGGATEAAGAGETAEE J
pUC18 F905-		
	Forward primer	5'-ATCGACGCTCAAGTCAGAGG-3'
1665	Reverse primer	5'-GATCGCTGAGATAGGTGCCTC-3'
(761-mer)	1	

Table S1. Templates and primers used for PCR amplification.

^a pET28a (338-mer) 5'-

Reference

1 S.Park, H. Otomo, L. Zheng, H. Sugiyama, Chem. Comm., 2014, 50, 1573–1575.