Supplementary data

A facile approach for carburization of anodically grown titania nanotubes: towards metallization of nanotubes

Deok Yeon Lee¹, Eun-Kyung Kim¹, Seog Joon Yoon¹, Iseul Lim¹, Keumnam Cho¹, Dipak V. Shinde¹, Supriya A. Patil¹, Wonjoo Lee², Yoon-Chae Nah³, Nabeen K. Shrestha^{1*}, Joong Kee Lee⁴, Sung-Hwan Han^{1*}

¹Department of Chemistry, Hanyang University, Haengdang-dong 17, Sungdong-ku, Seoul 133-791, Republic of Korea.

²Department of Defence Ammunitions, Daeduk College, Daejeon 305-715, Republic of Korea.

³School of Energy Materials Chemical Engineering, Korea University of Technology and Education, Cheonan 330-708, Republic of Korea.

⁴ Energy Storage Research Centre, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.

Fig. S1: Zoomed (zoomed of Fig. 3b) Ti 2p XPS spectra of TiO_2 nanotubes (TNTs) sample before and after carburization at 650 °C for 6h.

^{*}Fax: +82-2-2299-0762, Tel: +82-2-2220-0934, Email address: <u>shhan@hanyang.ac.kr</u>(S.-H. Han); <u>nabeenkshrestha@hotmail.com</u> (N.K. Shrestha)

Fig. S2: C1S XPS spectrum of TiO₂ nanotubes before and after carburization at 650 °C for 6h.

Fig. S3: (a) photo of TiO_2 nanotubes sample annealed at 650 °C for 6h inside the autogenic pressure reactor (Fig. 1a) without filling argon gas. SEM top (b) and cross-sectional (c) views of the same sample showing the collapsing of the nanotubes.

Fig. S4: XRD patterns (a) and SAED patterns of the carburized (650 °C, 6h) TiO_2 nanotube showing the presence of reduced oxides of Ti, e.g., Ti_5O_9 or Ti_7O_{13} .

Fig. S5: TEM view of a single carburized TiO_2 nanotube (a, b) and the EDX spectra of the same nanotubes (c, d).

Fig. S6: EIS Nyquist plot of TiO₂ nanotube (TNTs), carburized (650 °C, 6h) TNTs, and Pt electrodes in a solution of 5 mM K₄[Fe(CN)₆] in 0.1 M KNO₃ at peak current potential of CV, i.e., 0.38 V vs AgCl, frequency range: 10^{6} Hz– 10^{-2} Hz.

Fig. 7: Polarization curves of the Pt, carburized TNTs, and TNTs electrodes in $1M H_2SO_4$ exhibiting different overpotentials for O_2 evolution.