Supporting information for

Band gap engineering design for construction of energy-levels well-matched semiconductor heterojunction with enhanced visible-lightdriven photocatalytic activity

Hongwei Huang*^{,†}, Shuobo Wang[†], Yihe Zhang*^{,†}, Paul K. Chu[‡]

† National Laboratory of Mineral Materials, School of Materials Science and Technology, China

University of Geosciences, Beijing, 100083, PR China

‡ Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue,

Kowloon, Hong Kong, China

*Corresponding author: hhw@cugb.edu.cn (H.W. Huang); zyh@cugb.edu.cn. (Y.H. Zhang)

	MgWO ₄	Mg _{0.9} Cu _{0.1}	Mg _{0.8} Cu _{0.2}	$Mg_{0.7}Cu_{0.3}WO_4$	Mg _{0.6} Cu _{0.4} WO	CuWO ₄
		WO_4	WO_4		4	
X(eV)	6.135	6.141	6.171	6.189	6.191	6.315
Eg(eV)	3.89	2.87	2.85	2.79	2.74	1.84
CB(eV)	-0.31	0.21	0.25	0.30	0.32	0.6
VB(eV)	3.58	3.08	3.10	3.09	3.06	2.44

Table S1. Band gap, CB and VB of Mg_{1-x}Cu_xWO₄ (x=0, 0.1, 0.2 0.3 0.4 and 1)

 $E_{VB} = X - E^e + 0.5E_g; \quad E_{CB} = E_{VB} - E_g$

where X is the absolute electronegativity of the semiconductors, which is defined as the geometric average of the absolute electronegativity of the constituent atoms, E^e is the energy of free electrons on the hydrogen scale (\approx 4.5 eV), and E_g is the band gap.

$Mg_{0.7}Cu_{0.3}WO_4/Bi_2WO_6$	1:2	1:4	1:6	1:10
Mg	2.40	2.35	2.34	2.63
Cu	1	1	1	1
Bi	13.6	27.2	42.2	77.11
W	9.5	16.1	23.8	42.63

Table S2. ICP Elemental Analysis of $Mg_{0.7}Cu_{0.3}WO_4/Bi_2WO_6$ with different molar ratios (calculated in stoichiometric proportion)

Fig. S1 (a) Diffuse reflectance spectra and (b) Band gap of Bi₂WO₆.

Fig. S2 SEM image of 1:4 $Mg_{0.7}Cu_{0.3}WO_4/Bi_2WO_6$ heterojunction.

Fig. S3 Photocatalytic degradation curves of RhB under visible-light irradiation over $Mg_{1-x}Cu_xWO_4$ (x=0, 0.1, 0.2 0.3 and 0.4).