High-quality ZnO nanorods based flexible devices for electronic and biological applications

N. Koteeswara Reddy,^{1,2} M. Devika,^{1,3} C. W. Tu^{1,4}

¹Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500712, Korea

²Center for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India

³Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India

⁴Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407, USA

Supporting Information

SI-1: The ZnO seed-layers deposited under optimized conditions of $V_c = 1.5$ V and $A_T = 200$

°C) in the long duration time of Dt = 30 min was examined by SEM and XRD. The SEM

image and XRD profile of the as-deposited ZnO seed-layers on Ni coated Kapton sheets are

given below.

SI-2: XRD profile of ZnO NRs grown on seed-layers deposited at optimized conditions is given below. It shows that the as-synthesized ZnO NRs are preferentially oriented along (001)

planes since the observed d-spacing value of the diffraction peak is about 0.259 nm, which exactly matches with the stand dared JCPDS data (Card No: 36-1451). Further, the observed single diffraction peak suggests that the as-grown NRs exclusively have single ZnO phase.

