## **Electronic Supporting Information**

## Self-Assembled Triphenylamine Derivative for Trace Detection of Picric Acid

Li Wenfeng, Ma Hengchang\*a, Lei Ziqiang\*b

Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China



Fig. S1 visual color change due to the formation [TCPA & PA] and [TCEPA & PA] complex.



Fig. S2 <sup>1</sup>H NMR spectra of TCEPA and PA with different mol ratio in DMSO-d<sub>6</sub>.



Fig. S3 Selectivity graph of aggregates of TCEPA toward various nitroderivatives.



Fig. S4 Photographs of TCEPA-coated test strips under different experimental conditions. (a)blank. (b) After dipping into solutions of PA in THF ( $1 \times 10^{-3}$  M). (c) Thumb impression after rubbing with PA crystals. (d) PA

crystals on top. (e) Corresponding photographs upon removal of the crystals after 5 min. (f) Quenching in fluorescence of area exposed to the vapors of PA. All photographs were taken under 365 nm UV illumination.



**Fig. S5** Time-dependent fluorescence quenching of TCEPA upon PA vapor exposure. Inset shows change in emission intensity of TCEPA on exposure to PA with time.



**Fig. S6** Photograph of the fluorescence quenching of TCEPA-coated test strips by PA on contact mode (10  $\mu$ L of PA with a spot area of ~ 0.2 cm<sup>2</sup>) when viewed under 365 nm UV illumination., (I) 1×10<sup>-3</sup> M, (II) 1×10<sup>-5</sup> M, (III) 2×10<sup>-7</sup> M, (IV) 1×10<sup>-9</sup> M, (V) 1×10<sup>-11</sup> M, (VI) 1×10<sup>-13</sup> M, (VII) blank.



Fig. S7 Emission spectral change ( $\lambda_{ex} = 368$  nm) of the TCEPA coated test strips against concentration of added PA in THF (10  $\mu$ L, 10<sup>-13</sup> - 10<sup>-3</sup> M). Inset shows plot of the emission at 455 nm (%) of the test strips against concentration of added PA in THF.



Fig. S8 <sup>1</sup>HNMR spectrum of TCEPA in DMSO-*d*<sub>6</sub>.



Fig. S9 <sup>13</sup>CNMR spectrum of TCEPA in DMSO- $d_6$ .



Fig. S10 <sup>1</sup>HNMR spectrum of TCPA in DMSO- $d_6$ .



 $\begin{array}{c} \hline 176 & 174 & 172 & 170 & 168 & 166 & 164 & 162 & 160 & 158 & 156 & 154 & 152 & 150 & 148 & 146 & 144 & 142 & 140 & 138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 & 122 & 120 & 118 & 116 & 114 & 112 & 110 \\ \hline \textbf{pgm} \\ \textbf{Fig. S11} \ ^{13}\textbf{CNMR spectrum of TCPA in DMSO-} d_{6}. \end{array}$ 

| Publication                             | Selectivity | K <sub>SV</sub> (M <sup>-1</sup> ) | Detection limit | Vapour phase |
|-----------------------------------------|-------------|------------------------------------|-----------------|--------------|
|                                         | Towards PA  |                                    |                 | detection    |
| Present Manuscript                      | Very high   | 2.9810 <sup>6</sup> and            | 5ppb / 40ppb    | Yes          |
|                                         |             | 14.3 ×106                          |                 |              |
| Chem. Commun., 2012, 48, 5007.          | Low         | $9.9 	imes 10^4$                   | 20 ppb          | Yes          |
| J. Mater. Chem., 2012, 22, 11574.       | moderate    | 3.04×10 <sup>4</sup>               | 23 ppb          | No           |
| Macromol. Rapid Commun. 2010,           | Not given   | 6.36×10 <sup>4</sup>               | 1 ppm           | No           |
| <i>31</i> , 834.                        |             |                                    |                 |              |
| Chem. Commun., <b>2011</b> , 47, 10046. | Low         | 2.1×10 <sup>3</sup>                | Not given       | No           |
| Inorg. Chem., 2011, 50, 1506.           | Low         | 1× 10 <sup>5</sup>                 | Not given       | No           |
| Org. Lett., 2012, 14, 6084.             | high        | $9 \times 10^4$                    | 96 ppb          | No           |
| J. Org. Chem., 2013, 78, 1306.          | Low         | $3.3 \times 10^4$                  | 467 ppb , 354   | No           |
|                                         |             |                                    | ppb             |              |
| J. Am. Chem. Soc., 2003, 125, 3821.     | Low         | $1.1 \times 10^4$                  | -               | No           |
| Inorg. Chem., 2012, 51, 13072           | low         | -                                  | -               | No           |
| Org. Lett., 2012, 14, 3112              | low         | 6.9 × 10 <sup>4</sup>              | 500 ppb         | No           |
| Chem. Commun., 2012, 48, 7167.          | high        | $2.5 \times 10^{5}$                | 400 ppb         | No           |
| ACS Appl. Mater. Interfaces, 2011,      | high        | $5.7 \times 10^{3}$                | 70 ppb          | No           |
| 3, 1245.                                |             |                                    |                 |              |
| Langmuir, 2012, 28, 12417.              | high        | $13.3 \times 10^{5}$ ,             | -               | Yes          |
|                                         |             | $10.0 	imes 10^5$                  | <u> </u>        |              |
| J. Phys. Chem. B, 2013, 117, 14358.     | high        | $1.0 \times 10^{5}$                | -               | No           |

 Table S1 A comparison of the selectivity, K<sub>SV</sub>, detection limit and Vapour phase detection of the TCPA/TEPA

 with previous reports