Estimation of Work Index for By-Product Red Gypsum Sample

The standard laboratory procedures for estimating work index (Wi) can be divided into two categories, including tests on individual particles of rock and bulk rock material. A number of tests are required to get an idea of the rock strength. In this study, the standard of "Bond Pendulum test" was applied to estimate the work index of by-product red gypsum. In this test the energy required to crush a dry by-product red gypsum particle by the impact of two swinging hammers was determined. The standard method adopted by Bond is described as follows.

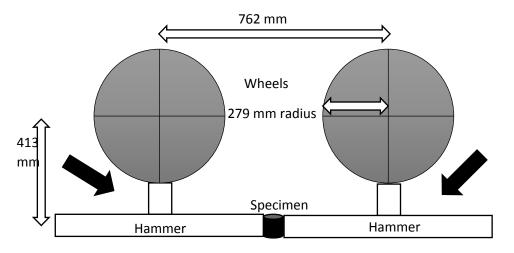
Two equal hammers, 13.6 kg each, about 0.7 m in length and the striking face 50×50 mm were suspended from two wheel rims. The hammers were raised to a known height and when released strike simultaneously was blown on opposite sides of a dry test piece. The test piece was supported with its smallest dimension between the hammers. The hammers were initially raised to make an angle of 10° with the vertical then released. After the impact, the test piece was examined for fracture and the number of pieces broken was recorded. If the piece was not completely broken, the hammers were raised a further 5° and the process repeated till the piece was completely shattered. The heights of the hammers were recorded each time. Based on this standard, at least 10 samples should be used per test. However, 20 samples of by-product red gypsum were utilized, which this number is preferred in this standard. The impact crushing strength (I) was calculated after each operation from the expression:

$$I = \frac{2 \times Mass of one hammer \times Final height of hammer (kg * m)}{d (mm)}$$

Where:

d = thickness of sample (mm)

The value of I was averaged over the 10 to 20 tests. The impact crushing strength of samples was used to calculate the Bond' crushing work index using the expression:


$$W_{i}(kWh/t) = \frac{C \times I}{Relative \ density \ of \ sample}$$

Where:

C is a constant which converts the impact crushing strength, numerically and dimensionally to the work index. C equals to 2.59 in the original Bond equation.

Calculations:

$$I = \frac{2 \times 13.6(kg) \times 1 (m)}{3 (mm)} = 9.066$$
$$W_i \left(\frac{kWh}{t}\right) = \frac{2.59 \times 9.066}{2.18} = 10.77$$

SIA: Bond's impact test to estimate work index of by-product red gypsum samples

Supported Information B

XRD Pattern

Formula Ca S O4 ·2 I Name Calcium Sul		d 7.59000	20 11.650	I 6117	h 0	k 2	L
Name (mineral) Gypsum Name (common)	iate nyorate	4.27709 3.79182 3.16415 3.06081 2.86326 2.78887 2.67897	20.751 23.442 28.180 29.152 31.213 32.068 33.421	3058 1223 245 3364 1529 367 1713	-1 0 -1 -1 0 -2 0	2 3 1 4 0 1 2	
Lattice: Monoclinic S.G.: I2/a (15) a = 5.68000 alpha = b = 15.18000 beta = 118.40 c = 6.51000 beta = 0 a/b = 0.37418 gamma = c/b = 0.42885 Z = 4	Mol.weight = 172.17 Volume [CD] = 493.75 Dx = Dm = I/Icor = -1.000	2.58871 2.53000 2.49820 2.45012 2.40262 2.21385 2.07557 2.07291 1.98928 1.95551 1.89750 1.87580 1.86548	34.622 35.452 35.919 36.648 37.399 40.723 42.225 43.570 43.629 45.564 46.401 47.902 48.492 48.777	245 61 367 245 245 367 122 612 489 245 122 979 612 245	-202-21-1-2-120-1-3	0 6 0 2 4 5 4 2 5 7 1 8 4 1	
Deleted Or Rejected By: Deleted by 00-0 Unit Cell Data Source: Powder Diffraction		1.83718 1.80938 1.80003 1.77763 1.68285 1.66503 1.64178 1.61894 1.59819 1.58248 1.53040 1.52215 1.49561	49,579 50,393 51,358 53,692 54,482 55,114 55,963 56,823 57,530 58,257 60,441 60,804 62,000	122 612 245 612 122 245 122 245 122 367 61 122 122 122 61	2 4 3 2 4 3 3 7 1 3 7 4 1 7	3 6 2 6 5 2 4 6 8 5 1 8 2 9	
Primary Reference Publication: Private Communication Authors: Gillery, F., The PA State Univ., I	Univ. Park, PA, USA.						
Radiation: CuKα1 Filt Wavelength: 1.54060 d-s SS/FOM: 10.6 (0.048,59)	er. Not specified pacing:						

Supported Information C Calculation of the CO₂ Uptake for Mineral Carbonation Process of By-Product Red Gypsum

$$CO_{2}uptake \ (mmol/g) = \sum_{i}^{n} \frac{(pCO_{2in} - pCO_{2out})_{i} * \Delta t * Q}{R * T * M}$$

 $pCO_{2 \text{ out}}$: mean value of pCO_{2} in the outflow (partial pressure of CO_2 up to 30%)

 Δt : time interval (1 min)

Q: flow rate (5 L/min)

Flow meter rates are reported in standard liters per minute (slpm), which is the number of liters per minute under standard conditions of temperature and pressure. R: gas constant (8.32 J/mol*K)

T: temperature (60 °C equals to 333.15 K)

M: mass of by-product red gypsum (10 g).

(1) Temperature п

$$CO_2 uptake \ (mmol/g) = \sum_i \frac{(7) \times 1 \times 5}{8.32 \times 298.15 \times 10} = \frac{35}{24806.08}$$

 CO_2 uptake = 1.41(mmol/g)

$$CO_2$$
uptake (mmol/g) = $\sum_{i}^{n} \frac{(15) \times 1 \times 5}{8.32 \times 323.15 \times 10} = \frac{75}{26886.08}$

 CO_2 uptake = 2.78 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(15.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{79}{27718.08}$$

 CO_2 uptake = 2.85 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(10.4) \times 1 \times 5}{8.32 \times 348.15 \times 10} = \frac{52}{28966.08}$$

 CO_2 uptake = 1.79 (mmol/g)

(2) Liquid to solid ratio

$$CO_2$$
uptake (mmol/g) = $\sum_{i=1}^{n} \frac{(15.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{79}{27718.08}$

 CO_2 uptake = 2.85 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(13.9) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{69.5}{27718.08}$$

 CO_2 uptake = 2.50 (mmol/g)

$$CO_2$$
uptake (mmol/g) = $\sum_{i=1}^{n} \frac{(9.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{49}{27718.08}$

 CO_2 uptake = 1.76 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(11.9) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{59.5}{27718.08}$$

 CO_2 uptake = 2.14 (mmol/g)

(3) Stirring rate

$$CO_2 uptake \ (mmol/g) = \sum_{i=1}^{n} \frac{(8.9) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{44.5}{27718.08}$$

$$CO_2$$
 uptake = 1.6 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(11.9 - 20\%) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{59.5}{27718.08}$$

$$CO_2$$
 uptake = 2.14 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i}^{n} \frac{(14.35) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{71.75}{27718.08}$$

$$CO_2$$
 uptake = 2.58 (mmol/g)

$$CO_2 uptake \ (mmol/g) = \sum_{i=1}^{n} \frac{(15.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{79}{27718.08}$$

 CO_2 uptake = 2.85 (mmol/g)

(4) Particle size

$$CO_{2}uptake \ (mmol/g) = \sum_{i}^{n} \frac{(15.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{79}{27718.08}$$

$$CO_{2} \ uptake = 2.85 \ (mmol/g)$$

$$CO_{2}uptake \ (mmol/g) = \sum_{i}^{n} \frac{(11.18) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{55.90}{27718.08}$$

$$CO_{2} \ uptake = 2.01 \ (mmol/g)$$

$$CO_{2}uptake \ (mmol/g) = \sum_{i}^{n} \frac{(7) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{35}{27718.08}$$

$$CO_{2} \ uptake = 1.26 \ (mmol/g)$$

$$CO_{2}uptake \ (mmol/g) = \sum_{i}^{n} \frac{(4.8) \times 1 \times 5}{8.32 \times 333.15 \times 10} = \frac{24}{27718.08}$$

 CO_2 uptake = 0.86 (mmol/g)

Calculation of the Amount of Output and Input needed for Mineral Carbonation Process of By-Product Red Gypsum

Supported Information D

In this research, the cost calculation of carbonation process is performed based on reference year in 2013. The energy used in the process of binding one tonne CO_2 in red gypsum represents a kilowatt hour of power per unit tonne CO_2 (kWh/tCO₂) stored. Additionally, the US Dollar (\$) is considered as reference currency. The price of electricity per 1 kWh is 0.13 US\$ (equal to 0.43 RM) based on the Ministry of Energy, Green Technology, and Water in Malaysia.

The cost of red gypsum mining is negligible. Three assumptions were made based on the experimental results to simplify the work. First, it was assumed that one t CO_2 is sequestrated. Second, one t CO_2 sequestration was performed based on the amount of red gypsum required. Third, the optimum liquid to solid ratio was considered to calculate the related cost. <u>Assumptions</u>:

1 g = 1 ml: if specific weight equal to 1 g/cm³ (or 1 wt.% = 1 ml)

 $1 \text{ t of } CO_2 = 1.977 \text{ L}$

 CO_2 uptake = $15.8\% \rightarrow 7.99$ g

Distilled water needed for dissolution and carbonation experiment:

$$H_2SO_4$$
 dilution → 92.95 ml
+
144.450 ml
NH₃ solution → 51.50 ml

Products:

- (1) Product 1 (TiO₂): 0.0692 t per one t by-product red gypsum
- Product 2 (Fe₂O₃): 0.280 t per one t by-product red gypsum
- (3) Product 3 (CaCO₃): 0.633 t per one t by-product red gypsum
- (4) NH₄HSO₄: 0.125 t per one t by-product red gypsum

SID1: The calculation of output and input materials needed for mineral carbonation process of by-product red gypsum

Input		
Specific weight (g/cm ³)	The amount needed (kg)	
1.977	1000	
(at 1 atm and 0 °C)	1000	
2.18	1251	
1 84	2720	
1.04	2720	
0.88	4620	
0.00	7020	
1	14445	
Output		
4.23	86.570	
5.24	350.280	
2.71	792.130	
1.77	-7067.796 a	
	Specific weight (g/cm ³) 1.977 (at 1 atm and 0 °C) 2.18 1.84 0.88 1 Output 4.23 5.24 2.71	

^a Some chemicals are produced in the carbonation

process, which are shown in the negative values.

Total costs = (transportation + energy consumption + chemicals and materials) –products income Total costs = (11+1.47+208.44) - 158.60 = 62.31 US\$

SID2: Mass balance of the input and output routes in the carbonation	process of by-product red gypsum.
Input (t)	

The optimum L/S 10 ml/g
1
1
1.251
2.720
4.620
14.445

=

Output (t)			
Product 1	0.086		
Product 2	0.350		
CaCO ₃	0.792		
(NH ₄)HSO ₄	-7.067 ª		

^a Some chemicals are produced in the carbonation process, which are shown in the negative values.

SID3: The amount of energy consumption for both input and output routes in mineral carbonation process of by-product red gypsum

Procedures -	Energy consumption (kWh/t) L/S = 10 ml/g
Mining	-
Crushing	0.643
Filtration	0.25
Work index	10.77
Total	11.663

SID4: The amount and cost of chemical needed in mineral carbonation process for sequestration 1 t CO₂ Amount needed Cost per t (US\$) Cost

Chemical	Amount needed (t)	Cost per t (US\$)	Cost (US\$)
Red gypsum	1.251	00.00	00.00
H_2SO_4	2.72	33.00	89.76
NH ₃ solution	4.620	21.00	97.02
Distilled water	14.445	1.50	21.66
Total	-	-	208.44
L/S = 10 ml/g			

t: tonne

SID5: The	amount of sold	products	obtained	from se	equestration	1 t	CO	2

Products	Amount achieved (t)	Sell per t industrial grade (US\$)	Income (US\$)
Product 1 (rich in TiO ₂)	0.086	115.00	9.89
Product 2 (rich in Fe)	0.350	32.00	11.2
Product 3 (CaCO ₃)	0.792	13.00	10.29
Remained solution [(NH ₄)HSO ₄]	7.067796	18	127.22
Total	-	-	158.60

L/S = 10 ml/g

t: tonne

Stor	Energy consumption	Price of electricity per	Cost
Step	(kWh/t)	1 kWh (US\$)	(US\$)
Crushing	0.643	0.13	0.08
Filtration +	0.25	0.13	0.03
Precipitation	10.77	0.13	1.40
Total	11.663	-	1.51

SID7: The total cost of energy consumed for 1 t CO₂ avoided

S4	Energy consumption	Price of electricity per	Cost
Step	(kWh/t)	1 kWh (US\$)	(US\$)
Crushing	0.643	0.13	0.08
Filtration +	0.25	0.13	0.03
Precipitation	10.77	0.13	1.40
Heat	11	0.13	1.43
Power	24	0.13	3.12
Total	11.663	-	5.98

Total dissolved inorganic carbon (TDIC) was determined as carbon in a gas sample taken from gas-tight cylinder and in a sample after mineral carbonation process. The amount of TDIC (mmol) was calculated by applying Henry's law considering the known volumes of headspace and solution:

$$TDIC = ppm\left(K_H + \frac{V_G}{R.T.V_W}\right)$$

 K_{H} : henry constant (10^{-1.41} mol/l.atm at 25 °C) V_G: gas volume of headspace (l) V_W: volume of solution (l)

Additionally, based on the amount of procedure variables such as reaction temperature, liquid to solid ratio, and stirring rate; CO_2 uptake by red gypsum suspension were experimentally determined. The mass transfer of CO_2 into solid carbonate was calculated as the difference between the amount of CO_2 uptake and TDIC.