## **Supporting material**

## Direct electrochemistry and electrocatalysis of glucose oxidase based on poly (L-arginine)-multi-walled carbon nanotubes

## A.T. Ezhil Vilian, Shen-Ming Chen\*,

\*Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (R.O.C).



Fig. S1. Repetitive cyclic voltammograms of 10mM of L-Arg in pH 6 PBS at the f-MWNTs/GCE surface. Scan rate: 100mVs<sup>-1</sup>.



Fig. S2. AFM images of *f*-MWCNTs films.



Fig. S3. AFM images of P-L-Arg/*f*-MWCNTs films.



Fig.S4.Bioelectrocatalysis of the P-L-Arg /*f*-MWCNTs/GCE towards  $H_2O_2$  in PBS (pH 6.5) with the scan rate of 0.5 V s<sup>-1</sup> and  $H_2O_2$  concentrations of (a) Bare GCE (b) 0, to (g) 5, mM.



**Fig.S5.**Amperometric response of P-L-Arg /*f*-MWCNTs/GCE modified electrode during various successive addition  $H_2O_2$ : conditions -0.4 V constant potential in pH 6.5 and rotation speed 2000 rpm. Insets plots of chrono amperometric current vs.  $H_2O_2$  concentration.



Fig. S6. Cyclic voltammograms for 100 multiple cycles in presences of 10 mM glucose in 0.05M pH 6.5 at a scan rate of 100 mV s<sup>-1</sup>.