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Figure S1(a) Photograph of the equipment and silica tube containing MoS2 

micropowder before reaction. (b) Photograph of silica tube containing MoS2 

micropowder during the reaction. (c) Photograph of silica tube containing MoS2 

micropowder after the reaction. (d) Photograph of a large silica tube containing MoS2 

micropowder during the reaction.
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Figure S2 Photograph of dispersion of g-C3N4 NSs after being stored for one month 

under ambient conditions. There is no precipitation and g-C3N4 NSs show a good 

dispersion in DI water, suggesting a well stability of NSs as photocatalyst.
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Figure S3 (a) TEM images and (b) the energy-dispersive spectroscope (EDS) 

spectrum of the as-exfoliated g-C3N4 NSs deposited on the Cu foil.

     The TEM images shows the ultrathin feature of g-C3N4 NSs, and the EDS 

spectrum demonstrates that g-C3N4 NSs are mainly composed of C and N elements 

with no residual Li elements was detected. The O element originates from O2 

absorbance on the surface of the as-prepared g-C3N4 NSs.
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      Figure S4 SEM images of (a) bulk g-C3N4 and (b) g-C3N4 NSs.
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Figure S5 C1s (a) N1s (b) and O1s (c) XPS spectra of bulk g-C3N4 , and g-C3N4 NSs. 

The peak of C 1s at 283.5 eV arises from the adventitious carbon in the samples.
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       Figure S6 Raman spectra of the bulk g-C3N4 C3N4 and C3N4 NSs. 
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Figure S7 AFM measurement of (a) typical MoS2 NSs and (b) WS2 NSs deposited on 

Si substrates.
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Figure S8 PL spectra of ultrathin g-C3N4 NSs aqueous solution excited at a range of 

wavelength. It can be seen that the PL spectra show negligible red shift with the 

increase of excited wavelength all located at blue light region.
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 Figure S9 PL spectra of ultrathin g-C3N4 NSs aqueous solution excited at 340 nm 

with different excitation intensity through tuning the slide width of fluorescence 

spectrometer from 1.0 nm to 3.5 nm. It is demonstrated that the peaks of PL spectra 

remain at ~ 431 nm, but the intensity of PL peak increases with the increasing 

excitation intensity.
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Figure S10 N2 adsorption-desorption isotherm of (a) g-C3N4 NSs and (b) bulk g-C3N4. 

The specific surface area of NS was 22.5 m2/g, whereas the bulk materials has a 

surface area of only 7.72 m2/g. 
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Figure S11 XRD patterns of bulk g-C3N4 before and after soaked in liquid ammonia.
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Table S1 Element composition before and after the liquid ammonia-
assisted lithium intercalation. 

N(%) C(%) H(%)

Bulk g-C3N4 62.47 35.36 1.638

g-C3N4 NS 60.90 34.48 1.657
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