Supporting Information

Probing Evolution of Ar-BINMOL-derived Salen-Co(III) Complex for Asymmetric Henry Reactions of Aromatic Aldehydes: Salan-Cu(II) *versus* Salen-Co(III) Catalysis

Yun-Long Wei[†], Ke-Fang Yang[†], Fei Li, Zhan-Jiang Zheng, Zheng Xu, and Li-Wen Xu*

Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE), Hangzhou Normal University, Hangzhou 311121, and Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China. Fax: (+86)-571-28867756; E-mail: <u>liwenxu@hznu.edu.cn</u>, <u>licpxulw@yahoo.com</u>

[†]Mr. Y. L. Wei and Dr. K. F. Yang contributed equally to this work (Co-first authors)

Contents

1. General informationp1
2. The Synthesis of Salen and Salan Ligandp2
3. The synthesis of (Salen)Co(III)-X catalystsp16
4. General procedure for the asymmetric Henry reactionsp19
Table S1. The effect of aromatic compound on the catalytic Henry reaction of
substituted aromatic aldehydes
Figure S1. Benzaldehyde-assisted catalytic Henry reaction of substituted aromatic
aldehydes
Figure S2. The comparison of enantioselectivities and yields in the salen-Co (1a)
catalyzed Henry reaction of F- or Br-substituted aromatic aldehydes
Figure S3. Optimized structures of the most reasonable catalyst-substructure
complexes (o-fluorobenzaldehyde and (R,R,S,S)-salen (5a)-Co(III) catalyst) based on
experimental results
5. HPLC chromatograms of Henry products 3p36
6. NMR Charts of salen ligands and Compounds 3p55

General information

All reagents and solvents were used directly without purification. Flash column chromatography was performed over silica (200-300 mesh). Reactions were monitored by thin layer chromatography using silica gel. ¹H NMR and ¹³C NMR (500 and 125MHz, respectively) spectra were recorded in CDCl₃, ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂CO at 2.05ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethyl silane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.20 ppm). Thin layer chromatography was performed using silica gel; F_{254} TLC plates and visualized with ultraviolet light. HPLC was carried out with a Waters 2695 Millennium system equipped with a photodiode array detector. The ESI-MS analysis of the samples was operated on an LCQ advantage mass spectrometer (ThermoFisher Company, USA), equipped with an ESI ion source in the positive ionization mode, with data acquisition using the Xcalibur software (Version 1.4).

2. The Synthesis of Salen and Salan Ligand

2.1. Schematic synthesis of salan 1-3

2.2 The synthesis of BINOL-derived product salan (1) from Ph-BINMOL:

Step a: To a solution of (S, R)-Ar-BINMOL (9.4g, >99%ee, 25 mmol) and NaI (22.5 g, 150 mmol) in dry acetonitrile (100 mL) were added TMSCI (13 mL, 150 mmol) at room temperature under Argon atmosphere. After the addition, the solution was allowed to stir at room temperature overnight. Then saturated sodium thiosulfate solution was added until the mixture turned colorless. The resultant mixture was extracted with DCM, and washed with water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 5/1) to give the desired product 2-A (9 g, 100% yield) as a white solid.¹H NMR (CDCl₃, 400 MHz) δ 7.91 (m, 3H), 7.52 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 6.8 Hz, 1H), 7.52-7.25 (m, 8H), 7.12 (d, J = 7.2 Hz, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 6.0 Hz, 1H), 4,62 (S, 1H), 3.77 (S, 2H).¹³C NMR (CDCl₃,100 MHz) δ 151.2, 140.5, 140.3, 133.7, 133.2, 132.8, 130.1, 129.3, 129.1, 129.1, 128.4, 128.3, 128.2, 127.0, 126.8, 126.1, 126.0, 125.8, 124.7, 124.7, 123.5, 117.5, 117.3, 77.4, 77.1, 76.8, 39.8 ppm. IR (neat, cm⁻¹): 3488, 3439, 3052, 3020, 2957, 2925, 1924, 1810, 1685, 1617, 1596, 1517, 1505, 1493, 1468, 1450, 1438, 1401, 1379, 1361, 1332, 1301, 1271, 1260, 1236, 1220, 1202, 1173, 1142, 1126, 1074, 1026, 975, 968, 948, 935, 910, 875, 868, 837, 816, 790, 769, 755, 717, 698, 684 cm⁻¹. Exact mass calcd for $C_{27}H_{20}O[M+H]^+$, 361.15, Found 361.15.

2.3 The synthesis of MOM-protected product (Step b):

To a solution of NaH (0.96 g, 40 mmol) in dry THF (150 mL) were added compound 2-A (7.2 g, 20 mmol) which was dissolved in dry THF at 0 °C temperature under Argon atmosphere. The mixture was stirred for 1h, then MOMCl (3.06 mL, 40 mmol) was added at 0 °C. The mixture was allowed to stir at room temperature for 4h. After quenching with water, the resultant mixture was extracted with ethyl acetate, and washed with water and saturated NaCl solution. The organic layer was dried over MgSO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 10/1) to give the desired product 2-B (7.28 g, 90% yield) as a pale yellow solid. ¹HNMR(CDCl₃,400 MHz) δ 7.93 (m, 4H), 7.59 (d, J = 9.2 Hz, H), 7.47-7.34 (m, 3H), 7.22 (s, 3H), 7.12-7.06 (m, 4H), 6.94 (s, 2H), 4.91 (m, 2H), 3.78 (s, 2H), 3.15 (s, 3H).¹³C NMR (CDCl₃, 100 MHz) δ 152.6, 141.1, 138.0, 134.0, 133.3, 132.7, 132.3, 129.7, 129.6, 129.2, 128.1, 128.0, 127.9, 127.9, 127.8, 126.5, 126.3, 126.0, 125.7, 125.4, 125.3, 124.1, 116.4, 94.6, 77.4, 77.1, 76.8, 55.8, 39.9 ppm. IR (neat, cm⁻¹): 3419, 3060, 3025, 2951, 2920, 2900, 2848, 2839, 1910, 1754, 1621, 1592, 1504, 1492, 1471, 1450, 1435, 1401, 1355, 1335, 1300, 1269, 1246, 1200, 1166, 1148, 1088, 1069, 1032, 1013, 946, 923, 897, 861, 843, 829, 812, 794, 784, 762, 747, 740, 718, 696, 683 cm⁻¹. Exact mass calcd for $C_{29}H_{24}O_2$ [M+Na]⁺, 427.17, Found 427.17.

2.4 The synthesis of BINMOL-derived aldehyde (Step c):

To a solution of compound **2-B** (4.04 g,10 mmol) in the dry THF (100 ml) were added TMEDA(1.8 ml, 12 mmol) in dry THF at -78 °C under Argon atmosphere. Then *n*-BuLi (9 ml, 14 mmol, 1.5 M in hexane) was added slowly in 1h. After the addition, the solution was allowed to stir at 0 °C for 30 min. The solution was then cooled to

-78 °C. A solution of dry DMF (10 mL, 13 mmol) in THF (10 mL) was added to the reaction and the solution was stirred for 30 min at -78 °C. The mixture was warmed to 0 °C and stirred for additional 1.5 h. After quenching with saturated NH₄Cl solution, 1 M HCl was added to the reaction mixture. The mixture was extracted with ethyl acetate, and washed with saturated NaHCO₃, water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 20/1) to give the desired product **2-C** (3.24 g, 75% yield) as a pale yellow power. ¹H NMR (500 MHz, CDCl3) δ : 10.61 (s, 1H), 8.60 (s, 1H), 8.02-8.04 (d, J = 8 Hz, 1H), 7.90-7.93 (t, J = 9Hz, 2H), 7.48-7.49 (d, J = 8.5, 1H), 7.43-7.4 (m, 2H), 7.25-7.30 (m, 2H), 7.19-7.20 (d, J = 8.5 Hz, 1H),7.03-7.08 (m, 4H), 6.88-6.89 (d, J = 7.5Hz, 1H), 4.68-4.69 (m, 1H), 4.55-4.56 (m, 2H), 4.55-43.92-3.95 (d, J = 15.5 Hz, 1 H), 3.78-3.85 (d, J = 15.5 Hz, 1H), 2.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ:153.2, 140.2, 138.9, 136.9, 133.3, 132.3, 131.8, 131.1, 130.1, 129.2, 129.0, 128.6, 128.1, 128.0, 126.5, 126.2, 126.0, 125.9, 99.9, 57.0, 40.1 ppm. IR (neat, cm⁻¹): 3057, 2920, 1689, 1618, 1586, 1506, 1496, 1451, 1382, 1354, 1330, 1259, 1182, 1156, 1104, 1073, 1042, 963, 925, 879, 832, 807, 787, 754, 712, 698, 665 cm⁻¹. Exact mass calcd for $C_{30}H_{24}O_3$ [M+Na]⁺, 455.16, Found 455.16.

2.5 The synthesis of deprotected BINMOL-derived aldehyde (Step d):

To a solution of compound 2-C (3.03 g , 7 mmol) in THF (75 ml) were added slowly Conc. HCl (75 ml) at 0 °C. The mixture was stirred for 2 h at room temperature. Then water was added, The resultant mixture was extracted with ethyl acetate, and washed with saturated NaHCO₃, water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 10/1) to give the desired product **2-D** (2.58 g , 95%yield) as a yellow power.¹H NMR (CDCl₃, 400 MHz) δ 10.04 (s, H), 10.18 (s, H), 8.42 (s, H), 7.87 (d, J = 8.8 Hz, 3H), 7.70 (s, H), 7.46-7.43 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.06 (s, 4H), 6.94 (d, J = 8.4 Hz, 3H), 3.78 (d, J = 5.6 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 196.8, 153.4, 140.7, 138.5, 138.0, 137.7, 132.9, 132.5, 130.6, 129.8, 129.2, 128.5, 128.2, 128.2, 128.1, 127.5, 126.4, 125.8, 125.7, 125.4, 125.2, 124.5, 122.1, 120.8, 39.9 ppm. IR (neat, cm⁻¹): 3428, 3150, 30591, 2838, 1792, 1655, 1629, 1577, 1506, 1452, 1443, 1412, 1384, 1292, 1254, 1225, 1212, 1179, 1142, 1115, 1073, 1054, 1025, 952, 936, 923, 895, 879, 856, 809, 796, 778, 757, 711, 697, 681 cm⁻¹. Exact mass calcd for C₂₈H₂₀O₂ [M]⁺, 388.15. Found 388.15;

To a solution of (1*S*,2*S*)- diaminocyclohexane tartrate (0.66 g , 2.5 mmol) and K₂CO₃ (0.7 g , 5 mmol) in 50% ethanol(12 ml) were added slowly compound **2-D** (1.94 g, 5 mmol) in ethanol(24ml) at room temperature. After the addition, the solution was allowed to stir at room temperature for 48h. The precipitate was collected by filtration, washed with ice ethanol, and dried in vacuum oven to obtain the product salen **2-E** (2.03 g , 95% yield) as a pale yellow power. ¹H NMR(CDCl₃, 400 MHz) δ 8.45(s, H), 8.34 (s, H), 8.01 (t, *J* = 7.2 Hz, H), 7.90 (d, *J* = 8.8 Hz, 4H), 7.76 (t, *J* = 8.0 Hz, 4H), 7.40 (s, H), 7.38 (s, H), 7.30 (s, H), 7.22 (s, H), 7.11-7.08 (m, 7H), 7.00 (s, H), 6.97 (d, *J* = 8.0 Hz, 5H), 6.94 (s, H), 6.92 (s, H), 3.81 (d, *J* = 5.6 Hz, 4H), 3.32-3.30 (m, 2H), 1.99 (d, *J* = 13.6 Hz, 2H), 1.89 (d, *J* = 8.8 Hz, 2H), 1.70 (d,

J = 11.2 Hz, 2H), 1.46 (t, J = 10.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 196.8, 165.0, 154.4, 141.0, 138.4, 138.0, 133.3, 129.3, 129.2, 128.9, 128.3, 128.2, 128.2, 128.0, 126.4, 126.1, 125.8, 125.8, 125.7, 125.6, 125.5, 125.2, 125.2, 124.7, 124.5, 123.3, 120.4, 119.3, 39.9 ppm. IR(neat, cm⁻¹): 3403, 3055, 2929, 2856, 1629, 1597, 1506, 1494, 1443, 1380, 1348, 1294, 1258, 1180, 1143, 1115, 1062, 1024, 941, 915, 808, 746, 712, 697 cm⁻¹. Exact mass calcd for C₆₂H₅₀N₂O₂ [M+H]⁺, 855.39, Found 855.39.

2.7 The synthesis of desired salan ligand (Step f):

To a solution of compound **E** (1.71 g , 2 mmol) in MeOH (20 ml) were added NaBH₄ (0.08 g , 2.2 mmol) at 0 °C. After stirring for 2 h, water was added to quench the reaction. The solvent was removed under vacuum. The resultant mixture was extracted with DCM, and washed with water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 10/1) to give the **BINMOL-derived Salan-1** (1.72 g, >99% yield) as a white solid.¹H NMR(CDCl₃, 400 MHz) δ 7.87 (d, *J* = 8.4 Hz, 5H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.55 (s, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.35-7.29 (m, 6H), 7.21-7.16 (m, 4H), 7.13-7.08 (m, 5H), 7.03(d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 7.6 Hz, 4H), 4.13 (s, 4H), 3.77 (s, 4H), 2.43 (s, 2H), 2.08 (s, 2H), 1.52 (s, 2H), 1.09 (d, *J* = 4.4 Hz, 6H).₁₃C NMR (CDCl₃, 100 MHz) δ 153.3, 141.3, 138.1, 133.8, 133.2, 132.5, 129.3, 128.1, 128.1, 128.0, 128.0, 127.6, 127.4, 126.3, 126.2, 126.1, 125.6, 125.3, 124.7, 123.2, 119.0, 60.2, 50.3, 50.2, 39.8, 30.5, 24.1 ppm. IR (neat, cm⁻¹): 3421, 3052, 3023, 2925, 2852, 1942, 1627, 1601, 1601, 1506, 1493,

1451, 1429, 1374, 1355, 1292, 1252, 1227, 1207, 1182, 1148, 1109, 1074, 1026, 939, 917, 885, 855, 829, 803, 783, 746, 717, 697 cm⁻¹. Exact mass calcd for $C_{62}H_{54}N_2O_2$ [M+H]⁺, 859.42, Found 859.42.

2.8 The synthesis of desired salan ligand 2 and 3.

To a solution of (1S,2S)-(-)-1,2-Diphenyl-1,2-ethanediamine (0.53 g , 2.5 mmol) and K_2CO_3 (0.7 g , 5 mmol) in 50% ethanol (12 mL) were added slowly 4 (1.94 g, 5 mmol) in ethanol(24ml) at room temperature. After the addition, the solution was allowed to stir at room temperature for 48h. The precipitate was collected by filtration, washed with ice ethanol, and dried in vacuum oven to obtain the product salen-2 (2.24 g, 94%)

yield) as a pale yellow power. To a solution of **salen-2** (1.90 g, 2 mmol) in MeOH (20 mL) were added NaBH₄ (0.08 g, 2.2 mmol) at 0 °C. After stirring for 2 h, water was added to quench the reaction. The solvent was removed under vacuum. The resultant mixture was extracted with DCM, and washed with water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl acetate = 10/1) to give **salan-2** (1.91 g, >99% yield) as a gray solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (d, J = 8.8 Hz, 6H), 7.18 (d, 11H), 7.10 (s, 7H), 7.04 (t, J = 8.4 Hz, 6H), 6.95 (t, J = 7.2 Hz, 8H), 6.83 (d, J = 8.0 Hz, 4H), 4.71 (s, 4H), 3.73 (d, J = 15.2 Hz, 4H), 3.55 (d, J = 15.2 Hz, 4H), 1.56 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 141.7, 138.7, 133.8, 133.2, 132.5, 130.0, 129.4, 128.1, 128.1, 128.0, 128.0, 127.7, 127.4, 126.3, 126.2, 126.1, 125.6, 125.6, 125.3, 124.7, 123.2, 119.0, 60.2, 50.3, 39.8. IR (neat, cm⁻¹): 3433, 3056, 3026, 2922, 2852, 1630, 1507, 1494, 1452, 1433, 1384, 1349, 1298, 1256, 1183, 1150, 1110, 1074, 1028, 888, 829, 783, 748, 716, 699 cm⁻¹. Exact mass calcd for C₇₀H₅₆N₂O₂ [M+H]⁺, 957.4420. Found 957.4372.

Using the same method, (1R,2R)-(-)-1,2-Diphenyl-1,2-ethanediamine can give **salan-3** (1.91 g, >99% yield) as a gray solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, J = 8.8 Hz, 6H), 7.15 (d, 11H), 7.07 (s, 7H), 7.01 (t, J = 8.4 Hz, 6H), 6.92 (t, J = 7.2 Hz, 8H), 6.80 (d, J = 8.0 Hz, 4H), 4.68 (s, 4H), 3.70 (d, J = 15.2 Hz, 4H), 3.52 (d, J = 15.2 Hz, 4H), 1.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 142.3, 139.3, 134.8, 134.2, 133.5, 131.0, 130.3, 129.1, 129.1, 129.0, 129.0, 128.7, 128.4,127.3, 127.2, 127.1, 126.6, 126.6, 126.3, 125.7, 124.2, 120.0, 61.2, 51.3, 40.8. IR (neat, cm⁻¹): 3435, 3056, 3026, 2922, 2852, 1629, 1506, 1494, 1452, 1433, 1384, 1349, 1255, 1183, 1149,

1110, 1027, 917, 889, 830, 804, 782, 748, 715, 699 cm⁻¹. Exact mass calcd for $C_{70}H_{56}N_2O_2 [M+H]^+$, 957.4420. Found 957.4363.

2.9 The Synthesis of Salen-5 Ligands

Similarly to the synthesis of salan ligand (1-3), the general procedure for the synthesis of salen liagnd 5 (5a-c):

To a solution of (1R, 2R)-diaminocyclohexane tartrate (0.66 g, 2.5 mmol) and K₂CO₃(0.7 g, 5 mmol) in 50% ethanol (12 mL) were added slowly the Ar-BINMOL-derived aldehyde (1.94 g, 5 mmol) in ethanol (24 mL) at room temperature. After the addition, the solution was allowed to stir at room temperature for 48 hrs. The precipitate was collected by filtration, washed with ice ethanol, and dried in vacuum oven to obtain the product **5a** (2.03 g, 95% yield) as a pale yellow power.

(*R*, *R*, *S*, *S*)-5a: ¹H-NMR (500 MHz, CDCl₃) δ : 12.99 (s, 2 H), 8.40 (s, 2 H), 7.85-7.87 (d, J = 11.5 Hz, 4 H), 7.69-7.73 (t, J = 10 Hz, 4 H), 7.42-7.44 (d, J = 11 Hz, 2 H), 7.31-7.35 (t, J = 10 Hz, 2 H), 7.15-7.26 (m, 4 H), 6.92-7.00 (m, 8 H), 6.84-6.97 (m, 8H), 3.73-3.83 (dd, J = 19, 27 Hz, 4 H), 3.26-3.28 (t, J = 4 Hz, 2H), 1.94-1.97 (d, J = 16.5Hz, 2H), 1.83-1.86 (d, J = 11Hz, 2 H), 1.66-1.68 (d, J = 12 Hz, 2H), 1.39-1.44 (t, J = 12.5Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 165.2, 154.5, 138.7, 136.1, 135.4, 135.0, 133.4, 133.2, 132.6, 132.0, 129.3, 129.0, 128.9, 128.4, 128.1, 127.5, 126.2, 126.0, 125.2, 124.9, 123.4, 120.6, 119.5, 73.2, 60.5, 39.5, 32.9, 24.2, 21.1, 14.3.

(*R*, *R*, *R*, *R*)- 5d: ¹H-NMR (500 MHz, CDCl₃) δ : 13.29 (s, 2H), 8.39 (s, 2H), 7.89-7.90 (m, 4H), 7.38-7.42 (m, 6H), 7.32-7.34 (d, J = 8.0 Hz, 2H), 7.25-7.26 (m, 4H), 7.10-7.14 (m, 10H), 7.00-7.02 (d, J = 6.5, 4H), 6.91-6.92 (d, J = 8.0 Hz, 2H), 3.72-3.75 (d, J = 15.0 Hz, 2H), 3.58-3.61 (d, J = 15.0 Hz, 2H), 3.33-3.35 (t, J = 5.0 Hz, 2H), 2.04-2.07 (d, J = 13.5 Hz, 2H), 1.90-1.91 (d, J = 8.5 Hz, 2H), 1.76 -1.78 (d, J = 10.0 Hz, 2H), 1.47-1.50 (d, J = 10.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 165.1, 154.2, 141.3, 138.6, 135.3, 133.2, 133.0, 132.5, 131.9, 129.6, 128.8, 128.2, 128.17, 128.12, 128.06, 128.0, 126.2, 125.7, 124.6, 123.2, 120.3, 119.3, 73.2, 39.6, 32.5, 24.1.

(*S*, *S*, *R*, *R*)-5e: ¹H NMR (500 MHz, CDCl₃) δ : 13.09- 13.11 (m, 2H), 8.49 - 8.51 (m, 2H), 7.93-7.94 (m, 4H), 7.78 - 7.81 (m, 4H), 7.52 - 7.55 (m, 2H), 7.42-7.43 (m,2H), 7.33-7.34 (m, 2H), 7.26-7.27 (m, 2H), 6.94 - 7.16 (m, 16H), 3.87-3.91 (m, 4H), 3.37 (s, 2H), 2.03-2.06 (d, J = 12.0 Hz, 2H), 1.93 (s, 2H), 1.77 (s, 2H), 1.51 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 165.1, 154.5, 141.1, 138.4, 135.3, 135.3, 135.3, 133.1, 132.1, 129.4, 128.9, 128.4, 128.1, 128.06, 127.4, 126.2, 125.9, 125.7, 125.3, 124.8, 123.3, 120.5, 119.4, 73.2, 40.0, 32.8, 24.2.

The synthesis of (R,R,S,S)-5b-c was similarly to that of 5a, and the characterization of product 5b-c was shown as following: 10/99

The characterization of product 5b-a (intermediate 1):¹H NMR (500 MHz, CDCl₃) δ: 7.87-7.93 (m, 4H), 7.50-7.64 (m, 2H), 7.17-7.37 (m, 5H), 6.90-6.95 (m, 5H), 6.57 (s, 1H), 5.70 (s, 1H), 3.42 (s, 1H), 2.28 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 151.4, 141.5, 139.6, 136.6, 134.2, 133.1, 130.1, 129.4, 129.1, 128.7, 128.1, 128.09, 126.7, 126.6, 126.4, 126.1, 125.2, 123.5, 118.1, 117.4, 73.3, 21.0.

The characterization of product 5b-b (intermediate 2):¹H NMR (500 MHz, CDCl₃) δ: 7.87-7.94 (m, 4 H), 7.44 - 7.53 (m, 2 H), 7.21-7.35 (m, 5H), 6.95-7.02 (m, 3 H), 6.81 - 6.8 (d, J = 7.6 Hz, 2H), 4.72 (s, 1H), 3.74 (s, 2H), 2.25 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ: 151.2, 140.7, 137.3, 135.5, 133.7, 133.3, 132.7, 130.0, 129.3, 129.2, 129.0 128.98, 128.8, 128.3, 128.2, 127.0, 126.7, 125.9, 124.7, 123.5, 117.5, 117.4, 39.3, 21.0.

The characterization of product 5b-c (intermediate 3): ¹H NMR (500 MHz, CDCl₃) δ: 8.02-8.04 (d, J = 8.4 Hz, 1H), 7.93-7.95 (m, 3H), 7.65-7.68 (d, J = 8.8 Hz, 1H), 7.51 -7.53 (d, J = 8.8 Hz, 1H), 7.40 - 7.48 (m, 2H), 7.26-7.29 (m, 3H), 7.14-7.16 (d, J = 8.8 Hz, 1H), 7.00 - 7.02 (d, J = 8.0 Hz, 2H), 6.91-6.93 (d, J = 8.0 Hz, 2H), 5.04-5.06 (d, J = 7.2 Hz, 1H), 4.96 -4.97 (d, J = 7.2 Hz, 1H), 3.18 (s, 2H), 3.21 (s, 3H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ: 152.7, 138.4, 138.0, 135.1, 134.0, 133.4, 132.6, 132.4, 129.8 129.6, 129.2, 128.8, 127.9, 127.93, 127.8, 126.6, 126.3, 126.0, 125.2, **11**/99 124.1, 122.9, 116.6, 94.8, 55.8, 39.4, 21.0.

The characterization of product 5b-d (intermediate 4): ¹H NMR (500 MHz, CDCl₃) δ : 10.67 (s, 1H), 8.65(s, 1H), 8.06- 8.08 (d, J = 8.0 Hz, 1H), 7.93-7.97 (t, J = 8.0 Hz, 2H), 7.52-7.54 (d, J = 8.4 Hz, 1H), 7.45-7.49 (t, J = 7.2 Hz, 2H), 7.24-7.33 (m, 3H), 7.10-7.12 (d, J = 8.8 Hz, 1H), 6.92-6.94 (d, J = 8.0 Hz, 2H), 6.83 -6.85 (d, J = 7.8 Hz, 2H), 4.73-4.83 (d, J = 6.0 Hz, 1H), 4.61-4.62 (d, J = 6.0 Hz, 1H), 3.94 -3.97 (d, J = 11.2 Hz, 1H), 3.79-3.83 (d, J = 11.2 Hz, 1H), 3.07 (s, 3H), 2.26 (s, 3H); ¹³C NMR (125MHz, CDCl₃) δ : 153.2, 139.3, 137.0 135.3, 133.4, 132.3, 132.3, 131.8, 131.0, 130.2, 129.2, 129.15, 129.0, 128.9, 128.6, 128.2, 128.09, 126.5, 126.3, 126.26, 126.0, 125.5, 99.9, 57.0, 39.6, 21.0.

The characterization of product S5b-e (intermediate 5): ¹H NMR (500 MHz, CDCl₃) δ : 10.45 (s 1H), 10.19 (s, 1H), 8.32 (s, 1H), 7.96-8.00 (d, J = 6.8, 1H), 7.92-7.94 (m, 2H), 7.23-7.51 (m, 6H), 7.10-7.12 (d, J = 8.0 Hz, 1H), 6.94-6.96 (d, J = 8.0 Hz, 2H), 6.87- 6.89 (d, J = 8.0 Hz, 2H), 3.75-3.85 (dd, J = 15.2, 21.2 Hz, 2H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 196.8, 153.4, 138.0 137.9, 137.7, 135.3, 133.0, 132.6, 130.6, 130.5, 129.8, 129.2, 128.9, 128.5, 128.3, 128.2, 127.6, 126.4, 125.4, 124.4, 122.1, 120.9, 39.5, 21.0.

The characterization of product (*R*,*R*,*S*,*S*)-5b: ¹H NMR (500 MHz, CDCl₃) δ : 8.93-8.94 (d, J = 8.5 Hz, 2H), 7.9 (s, 4H), 7.81-7.84 (m, 4H), 7.55-7.58 (m, 2H), 7.44-7.46 (m, 2H), 7.34-7.37 (m, 2H), 7.29-7.32 (m, 2H), 7.17-7.20 (m, 2H), 7.09-7.12 (m, 2H), 6.95-7.02 (m, 10H), 4.22-4.25 (m, 2H), 3.85-3.92 (m, 2H), 3.41 (d, J = 1.0 Hz, 2H), 2.33-2.34 (d, J = 3.5 Hz, 6H), 1.95-1.96 (d, J = 4.5 Hz, 2H), 1.81 (s, 2H), 1.35-1.41 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ : 165.2, 154.5, 138.7, 135.4, 135.0, 133.4, 133.2, 132.6, 132.0, 129.3, 129.0, 128.9, 128.4, 128.1, 127.5, 126.2, 126.0, 125.2, 124.9, 123.4, 120.6, 119.5, 60.5, 39.5, 32.9, 24.2, 21.1, 14.3;

The synthesis and characterization of product (R,R,S,S)-5c:

The characterization of product 5c-a(intermediate 1): ¹H NMR (400MHz,CDCl₃): 1.24 (s, 9 H), 2.91 (s, 1 H), 5.31 (s, CH₂Cl₂), 5.54 (s, 1 H), 5.76 (s, 1 H), 6.25 (d, J = 8.4 Hz, 1 H), 6.83 (d, J = 8.4 Hz, 2 H), 7.06 (t, J =8.0 Hz, 3 H), 7.19 (d, J = 8.4 Hz, 1 H), 7.26-7.31 (m, 3 H), 7.49 (t, J =8.0 Hz, 1 H), 7.70 (d, J = 8.4 Hz, 1 H), 7.88 (dd, J = 8.8, 16.0 Hz, 4 H) ; ¹³C NMR (100 MHz, CDCl₃): 31.3, 34.4, 53.5, 73.3, 117.1, 117.9, 123.5, 124.9, 124.97, 125.05, 125.9, 126.38, 126.44, 126.8, 127.9,128.1, 129.0, 129.5, 129.7, 130.1, 133.1, 133.4, 134.0, 139.4, 141.7, 149.99, 151.1.

The characterization of product 5c-b (intermediate-2): ¹H NMR (500 MHz, CDCl₃) δ : 7.94-8.04 (m, 4H), 7.59-7.61 (dd, J₁ = 2.0 Hz, J₂ = 8.5 Hz, 1H), 7.53-7.55 (m, 1H), 7.45-7.47 (m, 1H), 7.36-7.42 (m, 3H), 7.23-7.29 (m, 3H), 7.08-7.10 (d, J = 8.5Hz, 1H), 6.94-6.96 (m, 2H), 5.00 (s, 1H), 3.86 (s, 2H), 1.37-1.38 (d, J = 4.0 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃) δ : 151.3, 148.8, 140.7, 137.3, 133.9, 133.5, 132.8, 130.1, 129.3, 129.2, 128.9, 128.6, 128.2, 127.0, 126.04, 126.0, 125.3, 124.9, 123.5, 117.7, 117.5, 39.4, 34.4, 31.5;

The characterization of product 5c-c (intermediate-3): ¹H NMR (500 MHz, CDCl₃) δ: 7.95-8.06 (m, 4H), 7.60-7.70 (m, 2H), 7.40-7.49 (m, 2H), 7.21-7.32(m, 5H), 7.13-7.17 (m, 1H), 6.93-6.97 (m, 2H), 5.03-5.06 (m, 1H), 4.93-4.96 (m, 1H), 3.86-3.89 (m, 2H), 3.22-3.23 (m, 3H), 1.35-1.37 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ: 165.1, 154.2, 141.3, 138.6, 135.3, 133.2, 133.0, 132.5, 131.9, 129.6, 128.8, 128.2, 128.2, 128.1, 128.1, 128.0, 127.2, 126.2, 125.7, 125.2, 124.6, 123.2, 120.3, 119.3, 73.2, 39.6, 32.5, 24.1;

The characterization of product 5c-d (intermediate-4): ¹H NMR (400 MHz, CDCl₃) δ: 10.64 (s, 1H), 8.62 (s, 1H), 8.04 (s, 1H), 7.92-8.02 (m, 2H), 6.98-7.31 (m, 9H), 6.77 (d, J = 8.4 Hz, 2H), 4.57-4.71 (m, 2H), 3.80-3.96 (m, 2H), 2.96 (s, 3H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 191.1, 153.1, 148.5, 139.2, 127.1, 137.0, 133.4, 14/99

132.3, 131.8, 131.1, 130.0, 129.1, 129.0, 128.7, 128.6, 128.4, 128.1, 126.3, 126.2, 126.0, 125.4, 124.9, 99.9, 39.7, 34.3, 31.4.

The characterization of product 5c-e (intermediate-5): ¹H NMR (500 MHz, CDCl₃) δ: 10.43-10.45 (m, 1 H), 10.91 (s, 1 H), 8.31 (s, 1 H), 7.96-7.99 (s, 3 H), 6.87-7.60 (m, 11 H), 3.84-3.85 (m, 2 H), 1.29-1.31 (m, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ : 196.7, 153.4, 148.5, 138.8, 137.95, 137.88, 137.6, 133.0, 132.6, 130.7, 130.4, 129.8, 128.8, 128.5, 128.3, 127.5, 12.4, 125.8, 125.3, 125.0, 122.1, 120.9, 39.6, 34.3, 31.4.

The characterization of product (*R*,*R*,*S*,*S*)-5c/(Salen-5c): ¹H NMR (500 MHz, CDCl₃) δ : 13.4 (s, 2H), 8.35 (s, 2H), 7.88-7.90 (dd, J = 3.0 Hz, 8.5 Hz, 4H), 7.47-7.49 (d, J = 8.5 Hz, 2H), 7.38- 7.42 (m, 2H), 7.29 (s, 2H), 7.22-7.23 (d, J = 3.5 Hz, 4H), 7.10-7.12 (dd, J = 2.0 Hz, 8.5Hz, 6H), 6.90-7.04 (m, 8H), 3.78-3.82 (d, J = 15.5 Hz, 2H), 3.64-3.67 (d, J = 15.5 Hz, 2H), 3.31-3.33 (dd, J = 4.0 Hz, 6.0 Hz, 2H), 2.07-2.10 (d, J = 13.5 Hz, 2H), 1.90-1.92 (d, J = 8.5 Hz, 2H), 1.77-1.79 (m, 2H), 1.47-1.51 (t, J = 5.0 Hz, 2H), 1.27 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ :165.2, 154.0, 148.4, 138.8, 138.0, 135.3, 133.2, 132.5, 131.9, 129.2, 128.7, 128.1, 127.2, 126.1, 126.09, 125.1, 125.0, 124.6, 123.0, 120.2, 119.4, 39.4, 34.3, 32.3, 31.5, 21.1

3. The synthesis of (Salen)Co(III)-X catalysts^[2]

15 / 99

Typical procedure of synthesis of (Salen)Co-OTf: deoxygenated toluene (ca. 11.6 mL) was added to salen (0.9405 g, 1.1 mmol) under N₂, and deoxygenated MeOH (ca. 11.6 mL) to $Co(OAc)_2 \cdot 4H_2O$ (545 mg, 2.2 mmol) under N₂. N₂ was bubbled through the resulting solutions for 20 min to ensure complete deoxygenation. The solution of $Co(OAc)_2 \cdot 4H_2O$ in MeOH (purple) was added via cannula under N₂ to the solution of 5 in toluene (yellow) to give a deep red solution. The resulting mixture was stirred for 30 min under an N₂ purge. Trifluoromethanesulfonic acid (97 µL, 1.1 mmol) and CH_2Cl_2 (16.6 mL) were added, and the resulting black solution stirred for an additional 2 h under an air atmosphere with vigorous stirring. Solvent was removed under reduced pressure, and the residue dissolved in minimal CH_2Cl_2 . Excess insoluble $Co(OAc)_2 \cdot 4H_2O$ was removed via filtration through a Celite[®] pad, washing with CH_2Cl_2 (200 mL). Removal of solvent under reduced pressure provided complex 6 as a paramagnetic black solid (1.108g, >95%).

(*S*,*S*,*R*,*R*)-5e salen-Co-OTf: IR (KBr):3551, 3473, 3238, 3055, 2930, 2860, 2096, 1714, 1584, 1493, 1388, 1326, 1150, 1029, 957, 780, 638, 488, 408; ESI-MS (m/z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂911.30 found 911.80.

(*R*,*R*,*S*,*S*)-5a salen-Co-OTf: IR(KBr):3550, 3415, 3055, 2928, 1646, 1616, 1584, 1493, 1451, 1449, 1326, 1150, 1029, 757, 638, 510, 425; ESI-MS (m /z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂ 911.30 found 911.80.

(R,R,S,S)-5d salen-Co-OTf: IR (KBr): 3473, 3414, 3055, 2929, 2859, 1616, 1584, 1492, 1450, 1327, 1029, 953, 783, 698, 511, 433. ESI-MS (m /z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂ 911.30 found 911.80.

(*R*,*R*,*R*,*R*)-5b Co-OTf: IR (KBr): 3551, 3473, 3415, 3237, 3051, 2926, 2858, 1616, 1584, 1507, 1445, 1347, 1150, 1028, 950, 861, 808, 755, 637, 498, 432; ESI-MS (m/z): [M]⁺ calcd for C₆₄H₅₂CoN₂O₂ 939.33 found 939.35.

(*R*,*R*,*R*,*R*)-5c salen-Co-OTf: IR(KBr): 3550, 3473, 3415, 3235, 3053, 2958, 2865, 2067, 1910, 1616, 1507, 1387, 1295, 1150, 1115, 1028, 858, 813, 750, 637, 563, 507, 433. ESI-MS (m /z): [M]⁺calcd for C₇₀H₆₆CoN₂O₂ 1023.43, found 1023.90.

Typical procedure of the synthesis of S5a-Co-OAc:

Typical procedure: deoxygenated toluene (ca. 11.6 mL) was added to salen ligand (881 mg, 1.03 mmol) under N₂, and deoxygenated MeOH (ca. 11.6 mL) to $Co(OAc)_2 \cdot 4H_2O$ (372 mg, 1.5mmol) under N₂. N₂was bubbled through the resulting solutions for 20 min to ensure complete deoxygenation. The solution of $Co(OAc)_2 \cdot 4H_2O$ in MeOH (purple) was added via cannula under N₂ to the solution of 5 in toluene (yellow) to give a deep red solution. With stirred, the resulting mixture was reflux for 2h under 80°C.Solvent was removed under reduced pressure, and the residue dissolved in minimal CH₂Cl₂. Excess insoluble $Co(OAc)_2 \cdot 4H_2O$ was removed via filtration through a Celite[®]pad, washing with CH₂Cl₂ (200 mL). Removal of solvent under reduced pressure provided (Salen) Co-OAc as a paramagnetic black solid (701mg, >70%). IR(KBr): 3551, 3474, 3414, 3237, 2925, 2854, 1616, 2361, 1584, 1587, 1551, 1507, 1348, 1148, 961, 802, 744, 716, 617, 503, 431. ESI-MS (m /z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂911.30, found 911.80.

The synthesis of (*R*,*R*,*S*,*S*)-5a-Co-OTs:

A degassed solution of Co(OAc)₂·4 H₂O (11.0 mg, 0.044 mmol) in 3 mL MeOH was added to a degassed solution of **5a** (37.7 mg, 0.040 mmol) in 3 mL toluene via a cannula under N₂. The combined red solution was purged with N₂ for 30 min and then LPTS (11.1 mg, 0.040 mmol) was added and followed by 5 mL of CH₂Cl₂. The mixture was stirred exposed to air for 1.5 h and concentrated, re-dissolved in CH₂Cl₂ and filtered over Celite[®]pad. The filtrate was concentrated and precipitated in pentane, to filter off a dark green crystalline solid that was air-dried; yield: 24 mg (70%). IR (KBr): 3550, 3472, 3413, 3238, 3054, 2929, 2859, 1714, 1616, 1584, 1492, 1425, 1349, 1123, 956,757, 622, 567, 488, 433. ESI-MS (m /z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂911.30, found 911.80.

The synthesis of (*R*,*R*,*S*,*S*)-5a-Co-OCSA:

Deoxygenated toluene (ca. 11.6 mL) was added to salen ligand (0.9405 mg, 1.1 mmol) under N₂, and deoxygenated MeOH (ca. 11.6 mL) to Co(OAc)₂·4H₂O (545 mg, 2.2 mmol) under N₂. N₂ was bubbled through the resulting solutions for 20 min to ensure complete deoxygenation. The solution of Co(OAc)₂·4H₂O in MeOH (purple) was added via cannula under N₂ to the solution in toluene (yellow) to give a deep red solution. The resulting mixture was stirred for 30 min under an N₂ purge. CSA acid (256 mg, 1.1 mmol) and CH₂Cl₂ (16.6 mL) were added, and the resulting black solution stirred for an additional 2 h under an air atmosphere with vigorous stirring. Solvent was removed under reduced pressure, and the residue dissolved in minimal CH₂Cl₂. Excess insoluble Co(OAc)₂·4H₂O was removed via filtration through a Celite[®]pad, washing with CH₂Cl₂ (200 mL). Removal of solvent under reduced pressure provided salen-**5a**-Co(III)-OCAS as a paramagnetic black solid (856 mg, 82% yield). IR (KBr): 3551, 3475, 3414, 3238, 3055, 2933, 2860, 1732, 1616, 1584, 1492, 1451, 1425, 1326, 1149, 1039, 780, 757, 717, 617, 488, 432. ESI-MS (m /z): [M]⁺calcd for C₆₂H₄₈CoN₂O₂ 911.30, found 911.80.

4. General procedure for the asymmetric Henry reactions ^[3]

18 / 99

4.1 General procedure for the asymmetric salan-Cu(II)-catalyzed Henry reaction (Cu catalysis)

All reactions were performed on a 1 mmol scale with 10 mol% of Cu salt and 10 mol % of salan ligand (1) at a 0.5 M concentration using 10 equiv of nitromethane in EtOH. Reactions were run at 10 °C in a screw-capped vial for 48 h.

A representative procedure: salan ligand 1 (42.9 mg, 0.05 mmol) and and $Cu(OAc)_2 \cdot H_2O$ (10.0 mg, 0.05 mmol) were added to ethanol at ambient temperature. Stirring continued for ten minute and then nitromethane (0.27 mL, 10 mmol) and aromatic aldehyde (0.5 mmol) were added to the solution. After stirring for 48 hours, the mixture was then extracted with DCM and the organic extracts were combined, washed with brine, dried over anhydrous Na₂SO₄, and evaporated in vacuo. The residue was purified by column chromatography. All the products are known and confirmed by GC-MS, NMR, and HPLC.

4.2 General procedure for the asymmetric salan-Co(III)-catalyzed Henry reaction (Co catalysis)

General procedure: To a screw cap vial containing a stir bar, cobalt complex (26.5 mg, 0.025 mmol, 5% mmol) was added. And then 2 mL toluene, 2-fluorobenzaldehyde (53 μ L, 0.5 mmol), and DIPEA (83 μ L, 0.5 mmol) was added to the vial. The reaction mixture was cooled down to -20 °C, and then CH₃NO₂ (0.27 mL, 5 mmol) was added. The mixture was continued to stir at -20 °C for 12 h. The reaction mixture was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10/1) to give the nitroaldol adduct as a colorless oil.

(*S*)-1-(2-Methoxyphenyl)-2-nitroethanol (3a) was obtained according to the general procedure (89% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 9.06$ min, major enantiomer $t_r = 9.75$ min; 98%*ee*. [α]¹⁴_D = + 26.50° (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (d, J = 7.0 Hz ,1 H), 7.32-7.35 (m, 1 H), 7.03 (t, J = 7.5 Hz, 1 H), 6.91 (d, J = 8.5 Hz, 1 H), 5.59-5.62 (m, 1 H), 4.61-4.64 (m, 1 H), 4.53-4.57 (m,1H), 3.87 (s, 3 H), 3.38 (d, J = 6.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ : 156.0, 129.8, 127.2, 126.0, 121.1, 110.5, 80.0, 67.9, 55.5; IR (KBr): 3549, 3414, 3239, 2940, 2068, 1618, 1553, 1491, 1382, 1287, 1243, 1121, 1075, 1025, 789, 758, 617, 487 cm⁻¹;

(*S*)-1-(3-Methoxyphenyl)-2-nitroethanol (3b) was obtained according to the general procedure (64% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer t_r = 26.45 min, major enantiomer t_r = 35.29 min; 93% *ee*; $[\alpha]^{14}_D$ = + 9.82° (c = 0. 47, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.30 (t, J = 8.0 Hz, 1 H), 6.94 (d, J = 6.5Hz, 2 H), 6.88 (dd, J = 2.5Hz, 8.5Hz, 1 H), 5.41 (dd, J = 2.5 Hz, 9.5 Hz, 1 H), 4.56-4.60 (m, 1 H), 4.49 (dd, J = 3.0 Hz, 13.0 Hz, 1 H), 3.81 (s, 3 H), 3.05 (s, 1H); ¹³C NMR (125MHz, CDCl₃) δ : 160.1, 139.9, 130.1, 118.1, 114.4, 111.6, 81.3, 70.9,

55.3; IR (KBr): 3551, 2918, 2069,1617, 1552, 1488, 1382, 1324, 1125, 1075, 904, 844, 768, 730, 635, 493 cm⁻¹;

(*S*)-1-(2-Fluorophenyl)-2-nitroethanol (3f) was obtained according to the general procedure (92% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 95:5 V/V, 1mL/min, 215 nm); minor enantiomer $t_r = 15.125$ min, major enantiomer $t_r = 15.711$ min; 97% *ee*. $[\alpha]^{14}_D = +41.15^{\circ}$ (c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.55 (d, J = 7.5 Hz, 1 H), 7.39 (m, 1 H), 7.22 (d, J = 7.5 Hz, 1 H), 7.12 (m,1 H), 5.79 (dt, J = 8.5, 4.5 Hz, 1 H), 4.56-4.64 (m, 2 H), 3.39 (d, J = 1.1 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ : 159.33 (d, J_{CF} = 244.8 Hz), 130.50 (d, J_{CF} = 8.3 Hz), 127.62 (d, J_{CF} = 3.5Hz), 125.16 (d, J_{CF} = 13.4 Hz), 124.89 (d, J_{CF} = 2.2 Hz), 115.62 (d, J_{CF} = 20.9 Hz), 79.70 (d, J_{CF} = 1.3 Hz), 65.44 (d, J_{CF} = 2.8 Hz); ¹⁹ F NMR (470 MHz, CDCl₃) δ : -118.352; IR(KBr): 3422, 2923, 1617, 1588, 1557, 1489, 1457, 1380, 1074, 1033, 897, 809, 762, 739,615 cm⁻¹;

(*S*)-1-Phenyl-2-nitroethanol (3g) was obtained according to the general procedure as colorless oil (56% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 13.06$ min, major enantiomer $t_r = 15.85$ min; 94% ee. $[\alpha]^{14}_D = +14.07$ °(c = 0.8, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.43 - 7.35 (m, 5H), 5.45 (d, J = 10.0 Hz, 1 H), 4.62-4.57 (m, 1 H), 4.52-4.49 (m, 1 H), 3.00 (s, 1 H). ¹³C NMR (125 MHz, CDCl₃) δ : 138.1, 129.1, 129.0, 126.0, 81.2, 71.0. IR (KBr): 3418, 3032,

(*S*)-1-(3-Fluorophenyl)-2-nitroethanol (3h) was obtained according to the general procedure (59% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 11.19$ min, major enantiomer $t_r = 13.14$ min; 90% *ee*. $[\alpha]^{14}_{D} = 17.1^{\circ}$ (c = 0.8, CHCl₃) ; ¹H NMR (500 MHz, CDCl₃) δ : 7.36-7.40 (m, 1H), 7.14-7.18 (m, 2H), 7.07 (td, J = 8.5 Hz, 1H), 5.46 (d, J = 9.5 Hz, 1H), 4.510- 4.60 (m, 2H), 3.33 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.02 (d, J_{CF} = 196.6 Hz), 140.63 (d, J_{CF} = 5.3 Hz), 130.73 (d, J_{CF} = 6.5 Hz), 121.57 (d, J_{CF} = 2.3 Hz), 115.90 (d, J_{CF} = 16.7 Hz), 113.12(d, J_{CF} = 18 Hz), 80.99, 70.31 (d, J_{CF} = 1Hz). ¹⁹F-NMR (470 MHz, CDCl₃) δ : -111.440; IR (KBr): 3419, 2923, 1617, 1594, 1556, 1489, 1457, 1380, 1263, 1138, 1068, 893, 790, 710, 692 cm⁻¹;

(*S*)-1-(4-Fluorophenyl)-2-nitroethanol (3i) was obtained according to the general procedure (50% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 10.57$ min, major enantiomer $t_r = 12.40$ min; 78% *ee*. $[\alpha]^{17}_{D} = +$ 7.4° (c 0.33, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.37-7.39 (m, 2 H), 7.07-7.10 (m, 2 H), 5.44 (d, J = 8.5 Hz, 1 H), 4.55-4.60 (m, 2 H), 4.49 (dd, J = 3.0 Hz, 13.0 Hz, 1 H), 3.04 (s, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ : 162.9 (d, J_{CF} = 246.5 Hz), 134.0, 22/99

127.8 (d, $J_{CF} = 8.1$ Hz), 116.0 (d, $J_{CF} = 21.6$ Hz), 81.2, 70.3;¹⁹ FNMR (470 MHz, CDCl₃): -112.5; IR (KBr): 3420, 2922, 1902,1688, 1606, 1555, 1511, 1419, 1379, 1225, 1160, 1078, 897, 839, 728, 565, 531 cm⁻¹;

(*S*)-1-(2-Bromophenyl)-2-nitroethanol (3j) was obtained according to the general procedure (93% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 95:5 V/V, 1.0 mL/min, 215 nm); minor enantiomer $t_r = 20.87$ min, major enantiomer $t_r = 22.49$ min; 97% *ee*. $[\alpha]^{14}_{D} = +37.16^{\circ}$ (c 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) & 7.63 (d, J = 7.5 Hz, 1 H), 7.54 (d, J = 8.0 Hz, 1 H), 7.38-7.23 (m, 1 H), 5.77 (d, J = 9.5 Hz, 1 H), 4.64-4.67 (dd, J = 2.0 Hz, 13.5 Hz, 1 H), 4.38-4.43 (m, 1 H), 3.36 (s, 1 H); ¹³C NMR (125MHz, CDCl₃) & 137.12, 133.0, 130.3, 128.3, 127.8, 121.5, 79.4, 70.1; IR (KBr): 3473, 2921, 1636, 1555, 1468, 1438, 1416, 1377, 1286, 1201, 1125, 1084, 1023, 899, 759, 732, 663, 610, 445 cm⁻¹;

(*S*)-1-(3-Bromophenyl)-2-nitroethanol (3k) was obtained according to the general procedure (70% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 21.73$ min, major enantiomer $t_r = 28.05$ min; 94% *ee*; ¹H NMR (500 MHz, CDCl₃) 7.57 (s, 1 H), 7.49 (d, J = 7.5 Hz, 1H), 7.28-7.33 (m, 2H), 5.41 - 5.44 (m, 1H), 4.48-4.58 (m, 2H), 3.27 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ : 140.3, 23/99

132.1, 130.7, 129.1, 124.6, 123.1, 81.0, 70.2; IR (KBr): 3412, 2921, 1594, 1557, 1475, 1400, 1384, 1130, 1072, 898, 787, 694, 616 cm⁻¹;

(*S*)--1-(4-Bromophenyl)-2-nitroethanol (31) was obtained according to the general procedure (64% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 14.57$ min, major enantiomer $t_r = 19.00$ min, 91% *ee*; $[\alpha]^{25}_{D} = + 19.80^{\circ}$ (c = 0.56, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ : 7.50 (d, J = 8.5 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 H), 5.37 (dd, J = 3.0 Hz, 9.5 Hz, 1 H), 4.51-4.56 (m, 1H), 4.45 (dd, J = 3.5 Hz, 13.5 Hz, 1 H), 3.17 (s, 1 H); ¹³C NMR (125 MHz,CDCl₃) δ : 137.3, 132.1, 127.7, 122.9, 81.0, 70.3; IR (KBr): 3414, 2068, 1638, 1618, 1558, 1489, 1385, 1129, 1073, 1011, 741, 618, 482 cm⁻¹;

(*S*)-1-(2-Chlorophenyl)-2-nitroethanol (3m) was obtained according to the general procedure (67% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 11.98$ min, major enantiomer $t_r = 12.40$ min; 80%*ee*. $[\alpha]^{25}_{D} = +21.25^{\circ}$ (c 0.48, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.65 (dd, J = 1.0 Hz, 7.5 Hz, 1H), 7.28-7.38 (m, 3H) , 6.83 (d, J = 9.5 Hz, 1H), 4.66 (dd, J = 3.0 Hz, 13.5 Hz, 1 H), 4.45 (dd, J = 9.5 Hz, 13.5 Hz, 1 H) , 4.49 (dd, J = 3.0 Hz, 13.5 Hz, 1 H), 3.25 (s, 1H) . ¹³C NMR (125MHz, CDCl₃) δ : 136.7, 131.5, 129.9, 129.7, 127.6, 127.5, 79.4, 67.9; **24**/99

IR (KBr): 3548, 3417, 2923, 1617, 1556, 1473, 1441, 1417, 1379, 1223, 1086, 1034, 898, 760, 739, 613, 467 cm⁻¹;

(*S*)-1-(4-Chlorophenyl)-2-nitroethanol (3n) was obtained according to the general procedure (48% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 18.17$ min, major enantiomer $t_r = 23.45$ min; 86% *ee*.[α]¹⁴_D = +18.48 °(c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 7.65 (dd, J = 1.0 Hz, 7.5 Hz, 1H), 7.28-7.38 (m, 3H) , 6.83 (d, J = 9.5 Hz, 1H) ,4.66 (dd, J = 3.0 Hz, 13.5 Hz, 1 H), 4.45 (dd, J = 9.5 Hz, 13.5 Hz, 1 H) , 4.49 (dd, J = 3.0 Hz, 13.5 Hz, 1 H), 3.25 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 136.7, 134.8, 129.2, 127.4, 81.0, 70.3.

(*S*)-(-)-2-Nitro-1-(2-nitrophenyl)ethanol (30) was obtained according to the general procedure (99% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.9 mL/min, 215 nm); minor enantiomer $t_r = 16.95$ min, major enantiomer $t_r = 18.72$ min, 70% *ee*. $[\alpha]^{25}_{D+} = 116.40^{\circ}$ (c = 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ : 8.06 (dd, J = 1.0 Hz, 8.5 Hz, 1H), 7.73-7.76 (m, 1H), 7.53-7.56 (m, 1 H), 6.03 (d, J = 9.0 Hz), 4.85 (dd, J = 2.5 Hz, 14.0 Hz, 1H), 4.53-4.58 (m, 1H), 3.35 (d, J = 4.0 Hz); ¹³C NMR (125 MHz, (CD₃)₂CO, δ): 147.2, 134.3, 134.1, 129.7, 128.7, 125.0, 80.1, 66.8; IR (KBr): 3550, 3415, 3238, 3081, 1639, 1557, 1518, 1382, 1348, 1082, 859, 838, 754, 618, 485 cm⁻¹; 25/99

(*S*)-(–)-2-Nitro-1-(3-nitrophenyl)ethanol (3p) was obtained according to the general procedure (82% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 85:15 V/V, 1mL/min, 215 nm); minor enantiomer $t_r = 16.07$ min, major enantiomer $t_r = 18.23$ min; 95% *ee*; $[\alpha]^{17}_{D} = +53.2^{\circ}$ (c = 0.6, CHCl₃), ¹H NMR (500 MHz, (CD₃)₂CO) δ : 8.41 (s, 1 H), 8.19 (dd, J = 2.0 Hz, 8.5 Hz, 1 H), 7.97 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1 H), 5.68-5.71 (m, 1H), 5.57 (d, J = 4.5 Hz, 1 H), 4.92 (dd, J = 3.5 Hz, 13 Hz, 1H), 4.72-4.76 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ : 148.5, 142.7, 132.6, 129.9, 122.9, 121.1, 81.15, 69.6; IR (KBr): 3491, 3097, 2091, 1552, 1525, 1350, 1095, 1070, 919, 808, 735, 684 cm⁻¹;

(S)-2-Nitro-1-(4-nitrophenyl)ethanol (3q) was obtained according to the general procedure (89% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 21.4$ min, major enantiomer $t_r = 22.8$ min, 78% *ee*; $[\alpha]^{14}_{D} = +21.28^{\circ}$ (c 0.8, CHCl₃); ¹H NMR (500 MHz, (CD₃)₂CO) δ : 8.22 (d, J = 9.0 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 5.62-5.65 (m, 1H), 4.53 (d, J = 4.0 Hz, 1H), 4.87 (dd, J = 3.5 Hz, 13.0 Hz, 1H), 4.65-4.69 (m, 1H); ¹³C NMR (125MHz, (CD₃)₂CO) δ : 147.9, 147.6, 127.5, 123.5, 81.1, 69.8, 69.7.

(*S*)-1-(2,4-Dichlorophenyl)-2-nitroethanol (3r) was obtained according to the general procedure (89% yield). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 16.57$ min, major enantiomer $t_r = 19.95$ min; 92%*ee*. [α]¹⁷_D = + 15.75° (c = 0.8, CHCl₃); ¹H NMR (500 MHz, (CD₃)₂CO) δ : 7.71 (d, J = 8.5 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1 H), 7.42 (dd, J = 2.0 Hz, 7.0 Hz, 1H), 5.77-5.80 (m, 1 H), 5.45-(d. J = 5.0 Hz, 1 H), 4.78 (dd, J = 3,0.0 Hz, 13.0 Hz, 1 H), 4.49-4.53 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 136.6, 134.2, 132.1, 129.5, 128.9, 127.8, 79.8, 67.3. IR (KBr): 3551, 3414, 2924, 1638, 1617, 1470, 1384, 1139, 1069, 858, 832 cm⁻¹.

(*S*)-1-(2,6-Dichlorophenyl)-2-nitroethanol (3s) was obtained according to the general procedure (89% yield). Enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 21.36$ min, major enantiomer $t_r = 22.59$ min; 93%*ee*; $[\alpha]^{18}_D = -28.44^{\circ}$ (c = 0.8, CHCl₃); ¹H NMR (500 MHz, (CD₃)₂CO) δ : 7.47 (d, J = 7.0 Hz, 2H), 7.38 (dd, J = 7.5 Hz, 9.0 Hz, 1H), 6.37 (dd, J = 3.5 Hz, 10.0 Hz, 1H), 5.30 (dd, J = 10.0 Hz, 14.0 Hz, 1H), 4.78-4.81 (m, 1H), 2.14-2.19 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ : 140.2, 135.65, 135.59, 135.53, 134.8, 82.9, 73.0; IR (KBr): 3538, 2920, 1617, 1550, 1437, 1380, 1098, 893, 772, 736, 634 cm⁻¹;

(*S*)-1-Nitro-4-phenylbutan-2-ol (3t) was obtained according to the general procedure (78% yield). Enantiomeric excess was determined by HPLC with a Chiralcel IB column (*n*-hexane-isopropanol 92:8 V/V, 0.8 mL/min, 215 nm); minor enantiomer t_r =36.83 min, major enantiomer t_r = 34.8 min; 96% *ee*; $[\alpha]^{14}_D$ = -10.18 °(c = 0.8, CHCl₃); ¹H NMR (500 MHz, (CD₃)₂CO) δ : 7.24-7.31 (m, 4 H), 7.17-7.20 (m, 1 H), 4.63-4.65(d, J=6Hz, 1H), 4.57-4.60 (dd, J = 3.5 Hz, 12.5 Hz, 1 H), 4.31-4.47 (dd, J = 2.5,12.5Hz, 1 H), 4.25-4.28 (m, 1H), 2.83-2.89 (m, 1 H), 2.72-2.78 (m, 1 H), 1.80-1.91 (m, 2H). ¹³C NMR (125 MHz, (CD₃)₂CO) δ : 141.7, 128.4, 128.3, 125.9, 81.3, 66.0, 35.9, 31.2. IR (KBr): 3551, 3473, 2948, 2068, 1638, 1617, 1558, 1385, 1103, 881, 804 cm⁻¹.

(S)-1-(4-Cyanophenyl)-2-nitroethanol (3u) was obtained according to the general procedure (82% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 1mL/min, 215 nm); minor enantiomer $t_r = 28.70$ min, major enantiomer $t_r = 33.73$ min, 83%*ee*. [α]²⁰_D = 23.7; ¹H NMR (500 MHz, (CD₃)₂CO) δ : 7.82-7.89 (m, 4H), 5.68-5.72 (m, 1H), 5.55 (d, J = 4.5 Hz, 1H), 4.93-4.96 (dd, J = 3.0 Hz, 13.0 Hz, 1 H), 4.75-4.79 (m, 1H). ¹³C NMR (125 MHz, (CD₃)₂CO) δ : 145.6, 132.4, 127.2, 118.3, 111.8, 81.1, 70.0; IR (KBr): 3415, 2963, 2238, 1638, 1617, 1558, 1382, 1083, 904, 861 cm⁻¹;

(*S*)-1-(**Biphenyl-4-yl**)-2-nitroethanol (3v) was obtained according to the general procedure (50% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 90:10 V/V, 0.8 mL/min, 215 nm); minor enantiomer $t_r = 30.94$ min, major enantiomer $t_r = 37.54$ min; 94% *ee*. $[\alpha]^{25}_{D} = -13.48$ (c = 0.56, CHCl₃). ¹H NMR (500 MHz, (CD₃)₂CO) δ : 7.67 (t, J = 8 Hz, 4 H), 7.560 (d, J = 8.0 Hz, 2 H), 7.47 (t, J = 7.5 Hz, 2 H), 7.38 (t, J = 7.5 Hz, 1H), 5.55-5.59 (m, 1H), 5.23 (d, J = 4.0 Hz, 1H), 4.81 (dd, J = 3.5 Hz, 12.5Hz, 1 H) , 4.67-4.72 (m, 1H); ¹³C NMR (125 MHz, (CD₃)₂CO) δ : 140.9, 140.5, 139.4 , 128.9 , 127.5 , 127.4, 127.0, 126.9 ,126.8, 81.7, 70.5; IR (KBr): 3550, 3475, 3238, 1637, 1617, 1546, 1384, 1123, 1075, 902, 841 cm^{-1.}

(*S*)-1-(naphthalen-2-yl)-2-nitroethanol (3w) was obtained according to the general procedure (65% yield). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (*n*-hexane-isopropanol 50:50 V/V, 0.6 mL/min, 215 nm); minor enantiomer $t_r = 16.13$ min, major enantiomer $t_r = 22.33$ min; 94%ee. [α]²⁰_D = +55.19° (c = 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.83-7.88 (m, 4 H), 7.53-7.54 (m, 2 H), 7.45 (d, J = 8.5 Hz, 1H), 5.59 (d, J = 10.0 Hz, 1H), 4.55-4.69 (m, 2 H), 2.81 (s, 1 H). ¹³C NMR (125 MHz, CDCl₃) δ : 135.6, 133.4, 133.2, 129.0, 128.1, 127.8, 126.7, 126.6, 125.3, 123.3, 81.2, 71.2; IR (KBr): 3478, 3415, 2938, 1618, 1551, 1412, 1165, 109, 903, 868, 829 cm⁻¹.

References

[1] a) F. Li, Z. J. Zheng, J. Y. Shang, K. Z. Jiang, G. Q. Lai, J. X. Jiang, L. W. Xu, *Chem. Asian J.* **2012**, 7, 2008-2014; b) F. Li, L. Li, W. Yang, L. S. Zheng, Z. J. Zheng, K. Z. Jiang, Y. Lu, L. W. Xu, *Tetrahedron Lett.* **2013**, *54*, 1584-1588; c) L. S. Zheng, L. Li, K. F. Yang, Z. J. Zheng, X. Q. Xiao, L. W. Xu, *Tetrahedron* **2013**, *69*, 8777-8784; d) G. Gao, F. L. Gu, J. X. Jiang, K. Jiang, C. Q. Sheng, G. Q. Lai, L. W. Xu, *Chem. Eur. J.* **2011**, *17*, 2698-2703.

[2] a) X. Zheng, C. W. Jones, M. Weck, *Adv. Synth. Catal.* 2008, 350, 255-261; b) P. Yan, H. W. Jing, *Adv. Synth. Catal.* 2009, 351, 1325-1332; c) A. Sadhukhan, N. H. Khan, T. Roy, R. I. Kureshy, S. H. R. Abdi, H. C. Bajaj, *Chem. Eur. J.* 2012, 18, 5256-5260; d) J. M. Ready, E. N. Jacobsen, *J. Am. Chem. Soc.* 2001, 123, 2687-2688.

[3] For selected examples, see: a) T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 2054-2055; b) B. M. Choudary, K. V. S. Ranganath, U. Pal, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc. 2005, 127, 13167-13171; c) T. Arai, M. Watanabe, A. Fujiwara, N. Yokoyama, A. Yanagisawa, Angew. Chem. Int. Ed. 2006, 45, 5978-5981; d) M. Bandini, F. Piccinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, Chem. Commun. 2007, 616-618; e) Y. Xiong, F. Wang, X. Huang, Y. Wen, X. Feng, Chem. Eur. J. 2007, 13, 829-833; f) N. Sanjeevakumar, M. Periasamy, Tetrahedron: Asymmetry 2009, 20, 1824-1847; g) W. Jin, X. Li, Y. Huang, F. Wu, B. Wan, Chem. Eur. J. 2010, 16, 8259-8261; h) K. Kodama, K. Sugawara, T. Hirose, Chem. Eur. J. 2011, 17, 13584-13592; i) B. V. S. Reddy, J. George, Tetrahedron: Asymmetry 2011, 22, 1169-1175; j) G. Lai, F. Guo, Y. Zheng, Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha, Z. Wang, Chem. Eur. J. 2011, 17, 1114-1117; k) S. Milner, T. S. Thomas, A. R. Maguire, Eur. J. Org. Chem. 2012, 3059-3067; l) K. Xu, G. Y. lai, Z. G. Zha, S. S. Pan, H. W. Chen, Z. Y. Wang, Chem. Eur. J. 2012, 18, 12357-12362; m) R. Boobalan, G. H. Lee, C. P. Chen, Adv. Synth. Catal. 2012, 354, 2511-2520; n) D. D. Qin, W. H. Lai, D. Hu, Z. Chen, A. A. Wu, Y. P. Ruan, Z. H. Zhou, H. B. Chen, Chem. Eur. J. 2012, 18, 10515-10518; o) T. Nitabaru, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2012, 51, 1644-1647; p) H. Li, X. Zhang, X. Shi, N. Ji, W. He, S. Y. Zhang, B. L. Zhang, Adv. Synth. Catal. 2012, 354, 2264-2274; q) D. D. Qin, W. Yu, J. D. Zhou, Y. C. Zhang, Y. P. Ruan, Z. H. Zhou, H. B. Chem. Eur. J. 2013, 19, 16541-116544; r) S. Kitagaki, T. Ueda, C. Mukai, Chem. Commun. 2013, 49, 4030-4032; s) H. X. He, W. Yang, D. M. Du, Adv. Synth. Catal. 2013, 355, 1137-1148.

Table	S1 .	The	effect	of	aromatic	compound	on	the	catalytic	Henry	reaction	of
substituted aromatic aldehydes												

R	0 H 2	Salan 1 (10 mol%) Cu(OAc) ₂ (10 mol%) additive (10 mol%) EtOH, 48h, 10°C		² + R ^[]	₩NO ₂
(<i>R</i> , S)-	OH OH BINMOL	chalcone	Si-Si TBDPS-TBDPS		
Entry	Time	Additive	Conversion	3/4	ee/%
	(<i>d</i>)	D1 01	(%)		• •
l	2	PhCl	83 (V)	83:0	20
2	2	PhBr	48 (+)	0:48	
3	2	PhI	53 (+)	28:25	0
4	2	chalcone	88 (V)	14:74	
5	2	Ph-CH=CH-NO ₂	75 (√)	19:56	
6	5	TBDPS-TBDPS	75 (√)	75:0	30
7	2	TBDPS-TBDPS	25 (-)	25:0	40
8	5	PhMeSiH ₂	73 (√)	73:0	40
9	5	1-ethynylbenzene	77 (√)	77:0	34
10	2	(R)-BINMOL	53 (+)	14:39	-
11	2	PhOH	70 (√)	22:48	5
12	2	H.	46 (+)	46:0	16
13	2		20 (-)	20:0	44
14	2	N H	46 (+)	46:0	32
15	2	PhCOOH	<10 (-)	5:0	

^aAll reactions were carried out at -10 °C in a screw-capped vial for 48 h. ^b The conversion was determined by GC-MS, and the catalytic level was divied as Good (>70% yield, $\sqrt{}$), Moderate (40-70% yield, +), Poor (< 40% yield, -). ^c Enantiomeric excess was determined by HPLC using chiral columns.

Figure S1. Benzaldehyde-assisted catalytic Henry reaction of substituted aromatic aldehydes (a-e) in accordance with Table 1 (Text)

Figure S2. The comparison of enantioselectivities and yields in the salen-Co (1a) catalyzed Henry reaction of F- or Br-substituted aromatic aldehydes.

Figure S3. Optimized structures of the most reasonable catalyst-substructure complexes (*o*-fluorobenzaldehyde and (R,R,S,S)-salen (**5a**)-Co(III) catalyst) based on experimental results.

5. HPLC chromatograms of Henry products 3

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	9.071	2064.9	49.368	161
2	215	9.788	2117.8	50.632	151.6
mAU 260 200 150 100 0	Bartin Stranger				

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	9.06	50.5	1.092	4.4
2	215	9.746	4576.1	98.908	342.6

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	26.831	7569.8	49.943	170.6
2	215	35.979	7587	50.057	131.1

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	26.448	358.5	3.518	9.6
2	215	35.258	9846.8	96.487	178.5

Ĩ		Processed Chanel Descr	RT	Area	%Area	Height
Ī	1	215	15.759	7245.6	48.313	263.5
Ī	2	215	16.482	7762.8	51.687	260.5
mAL 300 250 200 150 100 50					15.126	
	·	10	12		16	min

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	15.125	126.7	1.385	7.2
2	215	15.711	9024.3	98.615	337.4

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	13.212	25355.5	49.783	1199.9
2	215	16.235	25576.5	50.217	1007.1

	Processed				
	Chanel	RT	Area	%Area	Height
	Descr				
1	215	13.06	595.6	2.918	33.9
2	215	15.847	198.18	97.082	880.4

	Processed				
	Chanel	RT	Area	%Area	Height
	Descr				
1	215	11.172	6986.5	49.971	431.8
2	215	13.183	6994.6	50.029	372.2
1000 - 800 - 400 - 200 -	261-176-170-170-170-170-170-170-170-170-170-170				
10.5	11.5	12 12	.0 13	13.0 14	mu

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	11.192	1216.4	4.919	81
2	215	13.144	23154.2	95.081	1205.1

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	10.467	38998.1	49.090	2010.2
2	215	12.279	40443.5	50.910	1880.1
mAU 400 350 250 2000 150 60 0	oo	A SE TOUR			

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	10.569	943.5	11.074	60.8
2	215	12.397	7577.1	88.926	416.5

1 215 21.112 26655.5 50.075 88' 2 215 22.889 26576.2 49.925 81' mAU 500		Processed Chanel Descr	RT	Area	%Area	Height
2 215 22.889 26576.2 49.925 81 ^{mAU}	1	215	21.112	26655.5	50.075	887.6
mAU 800 700 600 500 400 200	2	215	22.889	26576.2	49.925	817.7
	mAU 800 - 600 - 400 - 200 - 100 - 0 -		BB BB BB	23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24		

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	20.86	405.5	1.401	17.5
2	215	22.485	28533.6	98.599	865

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	20.729	1062.2	3.076	38.4
2	215	28.05	33471.1	96.924	792.7

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	14.57	2652.9	4.423	115.9
2	215	18.998	57328.5	95.577	1732.3

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	11.931	15119.2	48.975	974.8
2	215	12.424	15751.8	51.025	933.4

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	11.98	815.7	10.012	57.6
2	215	12.403	7331.5	89.988	412.6

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	18.078	8011.2	49.366	307.4
2	215	23.466	8216.9	50.634	236.3

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	18.169	949.8	7.524	35.7
2	215	23.453	11674	92.476	341.2

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	17.261	21638.2	50.07	651.3
2	215	19.117	21577.7	49.97	625.6

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.951	546.3	15.475	18.5
2	215	18.72	2984	84.525	91.7

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.065	186.2	2.453	6
2	215	18.227	7406.4	97.547	226.4

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	29.702	177	49.703	3.1
2	215	35.097	179.2	50.297	2.8

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	29.806	657.6	11.644	11.7
2	215	38.338	4989.8	88.356	72.4

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.568	17694.6	49.960	511.7
2	215	19.954	17723	50.040	424.7

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.517	409.7	3.886	13.4
2	215	19.89	10133.4	96.114	243.6

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	22.007	1690.9	49.07	41.3
2	215	23.527	1754.9	50.93	35.8

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	21.364	406	3.428	12
2	215	22.591	11436.6	96.573	252.1

	Processed				
	Chanel	RT	Area	%Area	Height
	Descr				
1	215	34.863	2604	49.522	55.9
2	215	36.867	2654.2	50.478	52

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	34.8	4291.5	98.045	91.9
2	215	36.827	85.6	1.955	2.2

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	28.003	39400329	50.12	489748
2	215	33.077	39204788	49.88	425163

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	28.702	345184	8.21	49.48
2	215	33.733	3860669	91.79	43435

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	30.922	822.4	50.151	15.9
2	215	37.536	87.5	49.849	14.1

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	30.94	600.8	2.938	11
2	215	37.543	19846.4	97.062	279

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.198	11083.3	49.977	396.9
2	215	22.588	11093.7	50.023	279.6

	Processed Chanel Descr	RT	Area	%Area	Height
1	215	16.132	382.1	2.938	14.5
2	215	22.332	12670.1	97.072	317.9

6. NMR Charts of salen and salan ligands and Compounds

ppm (t1)

66 / 99

68 / 99

Salan ligand 1: ¹H NMR

¹³C NMR

| 100 - 0

| 50

| 150 ppm (f1)

TM salan-3:¹HNMR

