Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

A ratiometric fluorescent probe for fluoride ion based on naphthoimidazolium receptor

Chunyan Zou,^a Qinglong Qiao,^{a,b} Miao Zhao,^b Deqi Mao,^{a,b} Danfeng Wang,^a

Lei Feng,^a Jingnan Cui^{a,*} and Zhaochao Xu^{a,b,*}

^a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China.

E-mail: jncui@dlut.edu.cn

^b Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian 116023, China.

E-mail: zcxu@dicp.ac.cn

List of Figures

Fig. S1	. Absorbance	e spectra of	compound	3-5 (10 µM) i	in acetonit	rile with different	anions
(50 μN	A, Cl ⁻ , Br ⁻ , I	-, AcO-, H	$_{2}PO_{4}^{-}$, and	HSO_4^- , as <i>n</i> -1	Bu ₄ N ⁺ salt	s). (a) compound	3, (b)
compou	und 4 , (c) con	npound 5.					S3
Fig. S2	. Changes in	UV-Vis spe	ctra of com	pound 5 (10 µľ	M) upon th	e addition of 0-40	equiv.
of F ⁻ in	CH ₃ CN. (a)	in the range	of 0-4 equi	v. of F ⁻ , (b) in	the range	of 4-40 equiv. of F	S4
Fig. S3	3. Fluorescen	ice response	es of 3-5 (10 µM) to va	rious anio	ons (50 μ M) in C	H ₃ CN.
λex=33	1nm. (a) com	pound 3 , (b) compound	l 4, (c) compou	und 5		S4
Fig. S4	4. ¹ H NMR	(a) and ¹⁹ F	NMR (b)	spectra of 4	with fluo	ride in CD ₃ CN at	t room
tempera	ature. $[4] = 2$	$ imes 10^{-2}$ mol/I					S5
Fig. S5	Part of ITM	S-ESI spect	rum of com	pound 3 with 5	5 equiv. F-	addition	S6
Fig. S6	. MALDI-TC	DF (LD+) sp	ectrum of co	ompound 4 wit	th 5 equiv.	F ⁻ addition	S7
Fig. S7	¹ H-NMR of	compound	8 in CDCl ₃ .				S7
Fig.	S8.	MS	(ES	API+)	of	compound	8.
				S8			
Fig. S9	• ¹ H-NMR of	compound	11 in CDCl	3			S8
Fig.	S10.	MS	(ES	API+)	of	compound	11.
				S9			
Fig. S1	1. ¹ H-NMR c	of compound	d 12 in CDC	l ₃			S9
Fig.	S12.	MS	(ES	API+)	of	compound	12.
			•••••	S10			
Fig. S1	3. ¹ H-NMR o	of compound	13 in CD_3C	N			S10
Fig. S1	4. ¹³ C-NMR	of compoun	d 3 in (CD ₃)) ₂ SO			S11
Fig. S1	5. HRMS (TO	OF LD+) of	compound	3			S11
Fig. S1	6. ¹ H-NMR o	of compound	$1 4 \text{ in } \text{CD}_3\text{C}$	N			S12
Fig. S1	7. ¹³ C-NMR	of compoun	$d 4 in CD_3C$	CN			S12
Fig. S1	8. ¹⁹ F-NMR	of compound	$d 4 in CD_3C$	'N			S13
Fig. S1	9. HRMS (T	OF LD+) of	compound	4			S13
Fig. S2	0. ¹ H-NMR o	of compound	15 in CD ₃ C	N			S14
Fig. S2	1. ¹³ C-NMR	of compoun	$d 5 in CD_3C$	CN			S14
Fig. S2	2. ¹⁹ F-NMR	of compound	d 5 in CD_3C	'N			S15
Fig. S2	3. HRMS (T	OF LD+) of	compound	5			S15

Fig. S1. Absorbance spectra of compound 3-5 (10 μ M) in acetonitrile with different anions (50 μ M, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻, and HSO₄⁻, as *n*-Bu₄N⁺ salts). (a) compound 3, (b) compound 4, (c) compound 5.

Fig. S2. Changes in UV-Vis spectra of compound **5** (10 μ M) upon the addition of 0–40 equiv. of F– in CH₃CN. (a) in the range of 0-4 equiv. of F–, (b) in the range of 4-40 equiv. of F–.

Fig. S3. Fluorescence responses of 3-5 (10 μ M) to various anions (50 μ M) in CH₃CN. λ ex=331nm. (a) compound 3, (b) compound 4, (c) compound 5.

Fig. S4. ¹H NMR (a) and ¹⁹F NMR (b) spectra of 4 with fluoride in CD₃CN at room temperature. [4] = 2×10^{-2} mol/L.

Fig. S5. Part of ITMS-ESI spectrum of compound 3 with 5 equiv. F⁻ addition.

Fig. S6. MALDI-TOF (LD+) spectrum of compound 4 with 5 equiv. F⁻ addition.

Fig. S7. ¹H-NMR of compound 8 in CDCl₃.

Fig. S8. MS (ES API+) of compound 8.

Fig. S9. ¹H-NMR of compound 11 in CDCl₃.

Fig. S10. MS (ES API+) of compound 11.

Fig. S11. ¹H-NMR of compound 12 in CDCl₃.

Fig. S12. MS (ES API+) of compound 12.

Fig. S13 ¹H-NMR of compound 3 in CD₃CN.

Fig. S14 13 C-NMR of compound 3 in (CD₃)₂SO.

Fig. S15 HRMS (TOF LD+) of compound 3.

Fig. S16 ¹H-NMR of compound 4 in CD₃CN.

Fig. S17 ¹³C-NMR of compound 4 in CD₃CN.

Fig. S18 ¹⁹F-NMR of compound 4 in CD₃CN.

Fig. S19 HRMS (TOF LD+) of compound 4.

Fig. S20 ¹H-NMR of compound 5 in CD₃CN.

Fig. S21 ¹³C-NMR of compound 5 in CD₃CN.

Fig. S22 ¹⁹F-NMR of compound 5 in CD₃CN.

Fig. S23 HRMS (TOF LD+) of compound 5.